首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The future environment may be altered by high concentrations of salt in the soil and elevated [CO2] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO2] stimulates photosynthesis by increasing CO2 availability in the Rubisco carboxylating site and by reducing photorespiration. However, few studies have focused on the interactive effects of these factors on photosynthesis. To elucidate this knowledge gap, we grew the barley plant, Hordeum vulgare (cv. Iranis), with and without salt stress at either ambient or elevated atmospheric [CO2] (350 or 700 μmol mol−1 CO2, respectively). We measured growth, several photosynthetic and fluorescence parameters, and carbohydrate content. Under saline conditions, the photosynthetic rate decreased, mostly because of stomatal limitations. Increasing salinity progressively increased metabolic (photochemical and biochemical) limitation; this included an increase in non-photochemical quenching and a reduction in the PSII quantum yield. When salinity was combined with elevated CO2, the rate of CO2 diffusion to the carboxylating site increased, despite lower stomatal and internal conductance. The greater CO2 availability increased the electron sink capacity, which alleviated the salt-induced metabolic limitations on the photosynthetic rate. Consequently, elevated CO2 partially mitigated the saline effects on photosynthesis by maintaining favorable biochemistry and photochemistry in barley leaves.  相似文献   

2.
This study examines the extent to which the predicted CO2‐protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol–1) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt‐stressed plants, elevated [CO2] increased leaf NO3 concentration and reduced Cl concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non‐stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt‐stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels.  相似文献   

3.
Rozema  J. 《Plant Ecology》1993,104(1):173-190
In general, C3 plant species are more responsive to atmospheric carbon dioxide (CO2) enrichment than C4-plants. Increased relative growth rate at elevated CO2 primarily relates to increased Net Assimilation Rate (NAR), and enhancement of net photosynthesis and reduced photorespiration. Transpiration and stomatal conductance decrease with elevated CO2, water use efficiency and shoot water potential increase, particularly in plants grown at high soil salinity. Leaf area per plant and leaf area per leaf may increase in an early growth stage with increased CO2, after a period of time Leaf Area Ratio (LAR) and Specific Leaf Area (SLA) generally decrease. Starch may accumulate with time in leaves grown at elevated CO2. Plants grown under salt stress with increased (dark) respiration as a sink for photosynthates, may not show such acclimation to increased atmospheric CO2 levels. Plant growth may be stimulated by atmospheric carbon dioxide enrichment and reduced by enhanced UV-B radiation but the limited data available on the effect of combined elevated CO2 and ultraviolet B (280–320 nm) (UV-B) radiation allow no general conclusion. CO2-induced increase of growth rate can be markedly modified at elevated UV-B radiation. Plant responses to elevated atmospheric CO2 and other environmental factors such as soil salinity and UV-B tend to be species-specific, because plant species differ in sensitivity to salinity and UV-B radiation, as well as to other environmental stress factors (drought, nutrient deficiency). Therefore, the effects of joint elevated atmospheric CO2 and increased soil salinity or elevated CO2 and enhanced UV-B to plants are physiologically complex.  相似文献   

4.
This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi‐arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (Anet), stomatal conductance (gs) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol?1 or ambient CO2 concentrations (approximately 390 µmol mol?1). Mean Anet (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO2] than previously found in FACE‐grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry‐land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO2] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO2], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO2] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates.  相似文献   

5.
With the changing climate, plants will be facing increasingly harsh environmental conditions marked by elevated salinity in the soils and elevated concentrations of CO2 in the atmosphere. These two factors have opposite effects on water status in plants. Therefore, our objective was to determine the interaction between these two factors and to determine whether elevated [CO2] might alleviate the adverse effects of salt stress on water status in two barley cultivars, Alpha and Iranis, by studying their relative water content and their water potential and its components, transpiration rate, hydraulic conductance, and water use efficiency. Both cultivars maintained their water status under salt stress, increasing water use efficiency and conserving a high relative water content by (1) reducing water potential via passive dehydration and active osmotic adjustment and (2) decreasing transpiration through stomatal closure and reducing hydraulic conductance. Iranis showed a greater capacity to achieve osmotic adjustment than Alpha. Under the combined conditions of salt-stress and elevated [CO2], both cultivars (1) achieved osmotic adjustment to a greater extent than at ambient [CO2], likely due to elevated rates of photosynthesis, and (2) decreased passive dehydration by stomatal closure, thereby maintaining a greater turgor potential, relative water content, and water use efficiency. Therefore, we found an interaction between salt stress and elevated [CO2] with regard to water status in plants and found that elevated [CO2] is associated with improved water status of salt-stressed barley plants.  相似文献   

6.
Dioecy is found in nearly half of the angiosperm families, but little is known about how rising atmospheric CO2 concentration will affect male and female individuals of dioecious species. We examined gender‐specific physiological and growth responses of Silene latifolia Poiret, a widespread dioecious species, to a doubled atmospheric CO2 concentration in environmentally controlled growth chambers. Elevated CO2 significantly increased photosynthesis in both male and female plants and by a similar magnitude. Males and females did not differ in net photosynthetic rate, but females had significantly greater biomass production than males, regardless of CO2 concentrations. Vegetative mass increased by 39% in males and in females, whereas reproductive mass increased by 82% in males and 97% in females at elevated CO2. As a result, proportionately more carbon was allocated to reproduction in male and female plants at elevated CO2. Higher CO2 increased individual seed mass significantly, but had no effect on the number or mass of seeds per female plant. Our results demonstrated that rising atmospheric CO2 will alter the allocation patterns in both male and female S. latifolia Poiret plants by shifting proportionally more photosynthate to reproduction.  相似文献   

7.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

8.
The future environment will exhibit increases in soil salt concentrations and atmospheric CO2. In general, plant growth is inhibited by salt stress and stimulated by elevated CO2. This study investigated whether elevated CO2 could improve plant growth under salt stress and the mechanisms involved. We measured functional and morphological components of growth in barley (cv. Iranis) subjected to 0, 80, 160, or 240 mM NaCl and grown at either 350 (ambient) or 700 (elevated) μmol mol?1 CO2. Under nonsaline conditions, elevated CO2 stimulated growth by increasing the relative growth rate (RGR). Maximum CO2 stimulation was observed within the first 10 days of development, before the start of the salt treatment. Afterwards, salt stress caused reductions in biomass production and RGR by decreasing the photosynthetic rate and increasing the respiration rate; this resulted in a reduced net assimilation rate (functional component). In addition, salt stress caused nutritional imbalances, which reduced the leaf expansion capacity, and changed the root-to-shoot ratio. This resulted in reductions in the specific leaf area and leaf weight ratio (morphological components). However, the functional component became more relevant with increasing salt stress. Under elevated CO2 conditions, salt stress inhibited growth less than that observed at ambient CO2. This occurred because (1) more dry biomass was synthesized for a given leaf area due to higher photosynthetic rates, and (2) greater leaf area and root biomass were maintained for photosynthesis and water and mineral uptake, respectively.  相似文献   

9.
Free‐floating Ulva prolifera is one of the causative species of green tides. When green tides occur, massive mats of floating U. prolifera thalli accumulate rapidly in surface waters with daily growth rates as high as 56%. The upper thalli of the mats experience environmental changes such as the change in carbon source, high salinity, and desiccation. In this study, the photosynthetic performances of PSI and PSII in U. prolifera thalli exposed to different atmospheric carbon dioxide (CO2) levels were measured. Changes in photosynthesis within salinity treatments and dehydration under different CO2 concentrations were also analyzed. The results showed that PSII activity was enhanced as CO2 increased, suggesting that CO2 assimilation was enhanced and U. prolifera thalli can utilize CO2 in the atmosphere directly, even when under moderate stress. In addition, changes in the proteome of U. prolifera in response to salt stress were investigated. Stress‐tolerance proteins appeared to have an important role in the response to salinity stress, whereas the abundance of proteins related to metabolism showed no significant change under low salinity treatments. These findings may be one of the main reasons for the extremely high growth rate of free‐floating U. prolifera when green tides occur.  相似文献   

10.
Leaf responses to elevated atmospheric CO2 concentration (Ca) are central to models of forest CO2 exchange with the atmosphere and constrain the magnitude of the future carbon sink. Estimating the magnitude of primary productivity enhancement of forests in elevated Ca requires an understanding of how photosynthesis is regulated by diffusional and biochemical components and up‐scaled to entire canopies. To test the sensitivity of leaf photosynthesis and stomatal conductance to elevated Ca in time and space, we compiled a comprehensive dataset measured over 10 years for a temperate pine forest of Pinus taeda, but also including deciduous species, primarily Liquidambar styraciflua. We combined over one thousand controlled‐response curves of photosynthesis as a function of environmental drivers (light, air Ca and temperature) measured at canopy heights up to 20 m over 11 years (1996–2006) to generate parameterizations for leaf‐scale models for the Duke free‐air CO2 enrichment (FACE) experiment. The enhancement of leaf net photosynthesis (Anet) in P. taeda by elevated Ca of +200 μmol mol?1 was 67% for current‐year needles in the upper crown in summer conditions over 10 years. Photosynthetic enhancement of P. taeda at the leaf‐scale increased by two‐fold from the driest to wettest growing seasons. Current‐year pine foliage Anet was sensitive to temporal variation, whereas previous‐year foliage Anet was less responsive and overall showed less enhancement (+30%). Photosynthetic downregulation in overwintering upper canopy pine needles was small at average leaf N (Narea), but statistically significant. In contrast, co‐dominant and subcanopy L. styraciflua trees showed Anet enhancement of 62% and no AnetNarea adjustments. Various understory deciduous tree species showed an average Anet enhancement of 42%. Differences in photosynthetic responses between overwintering pine needles and subcanopy deciduous leaves suggest that increased Ca has the potential to enhance the mixed‐species composition of planted pine stands and, by extension, naturally regenerating pine‐dominated stands.  相似文献   

11.
Olive (Olea europea L) is one of the most valuable and widespread fruit trees in the Mediterranean area. To breed olive for resistance to salinity, an environmental constraint typical of the Mediterranean, is an important goal. The photosynthetic limitations associated with salt stress caused by irrigation with saline (200 mm ) water were assessed with simultaneous gas‐exchange and fluorescence field measurements in six olive cultivars. Cultivars were found to possess inherently different photosynthesis when non‐stressed. When exposed to salt stress, cultivars with inherently high photosynthesis showed the highest photosynthetic reductions. There was no relationship between salt accumulation and photosynthesis reduction in either young or old leaves. Thus photosynthetic sensitivity to salt did not depend on salt exclusion or compartmentalization in the old leaves of the olive cultivars investigated. Salt reduced the photochemical efficiency, but this reduction was also not associated with photosynthesis reduction. Salt caused a reduction of stomatal and mesophyll conductance, especially in cultivars with inherently high photosynthesis. Mesophyll conductance was generally strongly associated with photosynthesis, but not in salt‐stressed leaves with a mesophyll conductance higher than 50 mmol m?2 s?1. The combined reduction of stomatal and mesophyll conductances in salt‐stressed leaves increased the CO2 draw‐down between ambient air and the chloroplasts. The CO2 draw‐down was strongly associated with photosynthesis reduction of salt‐stressed leaves but also with the variable photosynthesis of controls. The relationship between photosynthesis and CO2 draw‐down remained unchanged in most of the cultivars, suggesting no or small changes in Rubisco activity of salt‐stressed leaves. The present results indicate that the low chloroplast CO2 concentration set by both low stomatal and mesophyll conductances were the main limitations of photosynthesis in salt‐stressed olive as well as in cultivars with inherently low photosynthesis. It is consequently suggested that, independently of the apparent sensitivity of photosynthesis to salt, this effect may be relieved if conductances to CO2 diffusion are restored.  相似文献   

12.
Two mangrove species, Rhizophora apiculata and R. stylosa, were grown for 14 weeks in a multifactorial combination of salinity (125 and 350 mol m?3 NaCl), humidity (43 and 86% relative humidity at 30°C) and atmospheric CO2 concentration (340 and 700 cm3 m?3). Under ambient [CO2], growth responses to different combinations of salinity and humidity were consistent with interspecific differences in distribution along natural gradients of salinity and aridity in northern Australia. Elevated [CO2] had little effect on relative growth rate when it was limited by salinity but stimulated growth when limited by humidity. Both species benefited most from elevated [CO2] under relatively low salinity conditions in which growth was vigorous, but relative growth rate was enhanced more in the less salt-tolerant and more rapidly growing species, R. apiculata. Changes in both net assimilation rate and leaf area ratio contributed to changes in relative growth rates under elevated [CO2], with leaf area ratio increasing with decrease in humidity. Increase in water use efficiency under elevated [CO2] occurred with increase, decrease or no change in evaporation rates; water use characteristics which depended on both the species and the growth conditions. In summary, elevated [CO2] is unlikely to increase salt tolerance, but could alter competitive rankings of species along salinity × aridity gradients.  相似文献   

13.
We investigated the effect of elevated [CO2] (700 μmol mol?1), elevated temperature (+2 °C above ambient) and decreased soil water availability on net photosynthesis (Anet) and water relations of one‐year old potted loblolly pine (Pinus taeda L.) seedlings grown in treatment chambers with high fertility at three sites along a north‐south transect covering a large portion of the species native range. At each location (Blairsville, Athens and Tifton, GA) we constructed four treatment chambers and randomly assigned each chamber one of four treatments: ambient [CO2] and ambient temperature, elevated [CO2] and ambient temperature, ambient [CO2] and elevated temperature, or elevated [CO2] and elevated temperature. Within each chamber half of the seedlings were well watered and half received much less water (1/4 that of the well watered). Measurements of net photosynthesis (Anet), stomatal conductance (gs), leaf water potential and leaf fluorescence were made in June and September, 2008. We observed a significant increase in Anet in response to elevated [CO2] regardless of site or temperature treatment in June and September. An increase in air temperature of over 2 °C had no significant effect on Anet at any of the sites in June or September despite over a 6 °C difference in mean annual temperature between the sites. Decreased water availability significantly reduced Anet in all treatments at each site in June. The effects of elevated [CO2] and temperature on gs followed a similar trend. The temperature, [CO2] and water treatments did not significantly affect leaf water potential or chlorophyll fluorescence. Our findings suggest that predicted increases in [CO2] will significantly increase Anet, while predicted increases in air temperature will have little effect on Anet across the native range of loblolly pine. Potential decreases in precipitation will likely cause a significant reduction in Anet, though this may be mitigated by increased [CO2].  相似文献   

14.
We present evidence that plant growth at elevated atmospheric CO2 increases the high‐temperature tolerance of photosynthesis in a wide variety of plant species under both greenhouse and field conditions. We grew plants at ambient CO2 (~ 360 μ mol mol ? 1) and elevated CO2 (550–1000 μ mol mol ? 1) in three separate growth facilities, including the Nevada Desert Free‐Air Carbon Dioxide Enrichment (FACE) facility. Excised leaves from both the ambient and elevated CO2 treatments were exposed to temperatures ranging from 28 to 48 °C. In more than half the species examined (4 of 7, 3 of 5, and 3 of 5 species in the three facilities), leaves from elevated CO2‐grown plants maintained PSII efficiency (Fv/Fm) to significantly higher temperatures than ambient‐grown leaves. This enhanced PSII thermotolerance was found in both woody and herbaceous species and in both monocots and dicots. Detailed experiments conducted with Cucumis sativus showed that the greater Fv/Fm in elevated versus ambient CO2‐grown leaves following heat stress was due to both a higher Fm and a lower Fo, and that Fv/Fm differences between elevated and ambient CO2‐grown leaves persisted for at least 20 h following heat shock. Cucumis sativus leaves from elevated CO2‐grown plants had a critical temperature for the rapid rise in Fo that averaged 2·9 °C higher than leaves from ambient CO2‐grown plants, and maintained a higher maximal rate of net CO2 assimilation following heat shock. Given that photosynthesis is considered to be the physiological process most sensitive to high‐temperature damage and that rising atmospheric CO2 content will drive temperature increases in many already stressful environments, this CO2‐induced increase in plant high‐temperature tolerance may have a substantial impact on both the productivity and distribution of many plant species in the 21st century.  相似文献   

15.
Increased atmospheric CO2 concentration (Ca) produces a short‐term stimulation of photosynthesis and plant growth across terrestrial ecosystems. However, the long‐term response remains uncertain and is thought to depend on environmental constraints. In the longest experiment on natural ecosystem response to elevated Ca, we measured the shoot‐density, biomass and net CO2 exchange (NEE) responses to elevated Ca from 1987 to 2003 in a Scirpus olneyi wetland sedge community of the Chesapeake Bay, MD, USA. Measurements were conducted in five replicated open‐top chambers per CO2 treatment (ambient and elevated). In addition, unchambered control plots were monitored for shoot density. Responses of daytime NEE, Scirpus plant biomass and shoot density to elevated Ca were positive for any single year of the 17‐year period of study. Daytime NEE stimulation by elevated Ca rapidly dropped from 80% at the onset of the experiment to a long‐term stimulation average of about 35%. Shoot‐density stimulation by elevated Ca increased linearly with duration of exposure (r2=0.89), exceeding 120% after 17 years. Although of lesser magnitude, the shoot biomass response to elevated Ca was similar to that of the shoot density. Daytime NEE response to elevated Ca was not explained by the duration of exposure, but negatively correlated with salinity of the marsh, indicating that this elevated‐Ca response was decreased by water‐related stress. By contrast, circumstantial evidence suggested that salinity stress increased the stimulation of shoot density by elevated Ca, which highlights the complexity of the interaction between water‐related stresses and plant community responses to elevated Ca. Notwithstanding the effects of salinity stress, we believe that the most important finding of the present research is that a species response to elevated Ca can continually increase when this species is under stress and declining in its natural environment. This is particularly important because climate changes associated with elevated Ca are likely to increase environmental stresses on numerous species and modify their present distribution. Our results point to an increased resilience to change under elevated Ca when plants are exposed to adverse environmental conditions.  相似文献   

16.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

17.
With the changing climate, plants will be facing increasingly harsh environmental conditions marked by elevated salinity in the soils and elevated concentrations of CO2 in the atmosphere. These two factors have opposite effects on water status in plants. Therefore, our objective was to determine the interaction between these two factors and to determine whether elevated [CO2] might alleviate the adverse effects of salt stress on water status in two barley cultivars, Alpha and Iranis, by studying their relative water content and their water potential and its components, transpiration rate, hydraulic conductance, and water use efficiency. Both cultivars maintained their water status under salt stress, increasing water use efficiency and conserving a high relative water content by (1) reducing water potential via passive dehydration and active osmotic adjustment and (2) decreasing transpiration through stomatal closure and reducing hydraulic conductance. Iranis showed a greater capacity to achieve osmotic adjustment than Alpha. Under the combined conditions of salt-stress and elevated [CO2], both cultivars (1) achieved osmotic adjustment to a greater extent than at ambient [CO2], likely due to elevated rates of photosynthesis, and (2) decreased passive dehydration by stomatal closure, thereby maintaining a greater turgor potential, relative water content, and water use efficiency. Therefore, we found an interaction between salt stress and elevated [CO2] with regard to water status in plants and found that elevated [CO2] is associated with improved water status of salt-stressed barley plants.  相似文献   

18.
Arbutus unedo is a sclerophyllous evergreen, characteristic of Mediterranean coastal scrub vegetation. In Italy, trees of A. unedo have been found close to natural CO2 vents where the mean atmospheric carbon dioxide concentration is about 2200 μmol mol?1. Comparisons were made between trees growing in elevated and ambient CO2 concentrations to test for evidence of adaptation to long-term exposure to elevated CO2. Leaves formed at elevated CO2 have a lower stomatal density and stomatal index and higher specific leaf area than those formed at ambient CO2, but there was no change in carbon to nitrogen ratios of the leaf tissue. Stomatal conductance was lower at elevated CO2 during rapid growth in the spring. In mid-summer, under drought stress, stomatal closure of all leaves occurred and in the autumn, when stress was relieved, the conductance of leaves at both elevated and ambient CO2 increased. In the spring, the stomatal conductance of the new flush of leaves at ambient CO2 was higher than the leaves at elevated CO2, increasing instantaneous water use efficiency at elevated CO2. Chlorophyll fluorescence measurements suggested that elevated CO2 provided some protection against photoinhibition in mid-summer. Analysis of A/Ci curves showed that there was no evidence of either upward or downward regulation of photosynthesis at elevated CO2. It is therefore anticipated that A. unedo will have higher growth rates as the ambient CO2 concentrations increase.  相似文献   

19.
Forest trees are major components of the terrestrial biome and their response to rising atmospheric CO2 plays a prominent role in the global carbon cycle. In this study, loblolly pine seedlings were planted in the field in recently disturbed soil of high fertility, and CO2 partial pressures were maintained at ambient CO2 (Amb) and elevated CO2 (Amb + 30 Pa) for 4 years. The objective of the study was to measure seasonal and long-term responses in growth and photosynthesis of loblolly pine exposed to elevated CO2 under ambient field conditions of precipitation, light, temperature and nutrient availability. Loblolly pine trees grown in elevated CO2 produced 90% more biomass after four growing seasons than did trees grown in ambient CO2. This large increase in final biomass was primarily due to a 217% increase in leaf area in the first growing season which resulted in much higher relative growth rates for trees grown in elevated CO2. Although there was not a sustained effect of elevated CO2 on relative growth rate after the first growing season, absolute production of biomass continued to increase each year in trees grown in elevated CO2 as a consequence of the compound interest effect of increased leaf area on the production of more new leaf area and more biomass. Allometric analyses of biomass allocation patterns demonstrated size-dependent shifts in allocation, but no direct effects of elevated CO2 on partitioning of biomass. Leaf photosynthetic rates were always higher in trees grown in elevated CO2, but these differences were greater in the summer (60–130% increase) than in the winter (14–44% increase), reflecting strong seasonal effects of temperature on photosynthesis. Our results suggest that seasonal variation in the relative photosynthetic response to elevated CO2 will occur in natural ecosystems, but total non-structural carbohydrate (TNC) levels in leaves indicate that this variation may not always be related to sink activity. Despite indications of canopy-level adjustments in carbon assimilation, enhanced levels of leaf photosynthesis coupled with increased total leaf area indicate that net carbon assimilation for the whole tree was greater for trees grown under elevated CO2 compared with ambient CO2. If the large growth enhancement observed in loblolly pine were maintained after canopy closure, then these trees could be a large sink for fossil carbon emitted to the atmosphere and produce a negative feedback on atmospheric CO2.  相似文献   

20.
The productivity of many important crops is significantly threatened by water shortage, and the elevated atmospheric CO2 can significantly interact with physiological processes and crop responses to drought. We examined the effects of three different CO2 concentrations (historical ~300 ppm, ambient ~400 ppm and elevated ~700 ppm) on physiological traits of oilseed rape (Brassica napus L.) seedlings subjected to well‐watered and reduced water availability. Our data show (1) that, as expected, increasing CO2 level positively modulates leaf photosynthetic traits, leaf water‐use efficiency and growth under non‐stressed conditions, although a pronounced acclimation of photosynthesis to elevated CO2 occurred; (2) that the predicted elevated CO2 concentration does not reduce total evapotranspiration under drought when compared with present (400 ppm) and historical (300 ppm) concentrations because of a larger leaf area that does not buffer transpiration; and (3) that accordingly, the physiological traits analysed decreased similarly under stress for all CO2 concentrations. Our data support the hypothesis that increasing CO2 concentrations may not significantly counteract the negative effect of increasing drought intensity on Brassica napus performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号