首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
来源于早期胚胎的胚胎干细胞 (ES)和胎儿生殖脊干细胞 (EG)可在未分化状态下长期增殖培养 ,并保持其多向分化潜能 .体外培养ES细胞的条件已趋于稳定 ,国内外建立了来自人和多种动物早期胚胎的ES细胞系 .某些细胞因子和化学物质等可定向诱导ES细胞分化为各种不同类型的组织细胞 .ES细胞在胚胎发育、细胞分化、转基因动物、移植治疗、药物开发等领域具有广阔的应用前景 .  相似文献   

2.
恶性畸胎癌干细胞又叫做胚胎性癌细胞(简称EC细胞),是一种来自生殖细胞或早期胚胎细胞的恶性癌细胞,不仅具有类似于早期胚胎细胞分化多能性,而且能在一定条件下失去恶性生长性质,分化为各个胚层的正常组织。EC细胞是开展哺乳类胚胎早期发育遗传以及癌变和癌细胞分化研究较好的实验材料。EC细胞在体外可以大量培养生长,较之正常胚胎细胞更容易获取。我们在建立体内腹  相似文献   

3.
哺乳动物胚胎发育产生的第一个细胞系的分离是内细胞团和滋养层的分离,不同哺乳动物之间胚胎干细胞向滋养层细胞分化不同,滋养层细胞对胚胎的植入、促进胚胎在子宫内的生存和生长至关重要.人胚胎干细胞为研究人类胚胎发育及向滋养层分化提供了一个独特的模型.人胚胎干细胞可以在实验室条件下保持无限期稳定的培养,用于最初胚胎和滋养外胚层发生的机制研究.目前人胚胎干细胞分化为滋养层细胞在体外可以通过自发分化、基因敲除、分离EB小体和BMP4诱导等几种途径实现.不同哺乳动物之间胚胎干细胞向滋养层分化机制,主要通过信号通路如BMP4,LIF等以及某些标志基因如OCT4,CDX2,Eomes等的变化调节.人胚胎干细胞向滋养层分化的研究为临床应用提供了一定的基础.  相似文献   

4.
蛋白O-连接岩藻糖基转移酶1 (Pofut1)基因缺失可导致Notch分子无法与配体结合并启动信号传递. 为研究Pofut1基因对哺乳动物胚胎干细胞(ESC)向神经分化的影响,利用Pofut1基因敲除的胚胎干细胞与野生型胚胎干细胞,经体外培养诱导拟胚体(EB)分化为神经细胞,计数分化为神经细胞的比例,采用细胞免疫组化染色和real-time PCR等方法,分析神经细胞特异性标志分子的表达. 结果显示,Pofut1基因缺失后,对EBC生长没有明显影响,分化过程中形成的拟胚体数量明显增多,分化的神经样细胞以及神经标志物分子的表达也明显多于对照组;Notch信号缺失对小鼠胚胎干细胞生长无明显影响,但可以促进ES细胞向神经细胞分化.  相似文献   

5.
干细胞概述   总被引:7,自引:0,他引:7  
林戈  卢光琇 《生命科学》2006,18(4):313-317
干细胞是存在于胚胎和成体中的一类特殊细胞,它能长期地自我更新,在特定的条件下具有分化形成多种终末细胞的能力,不同来源的干细胞分化潜能各异。从早期胚胎内细胞团分离的胚胎干细胞能分化形成个体所有的细胞类型,并具有在体外无限增殖的能力,是最具有临床应用前景和研究价值的干细胞之一。在成体各种组织和器官中也存在成体干细胞,用于维持机体结构和功能的稳态。近期有关成体干细胞可塑性的研究和成体组织中多能干细胞存在的证据扩大了人们对成体干细胞分化潜能的认识。干细胞具有的多向分化潜能和自我更新能力使其成为未来再生医学的重要种子细胞,并成为研究人类早期胚层特化和器官形成、药物筛选以及基因治疗的最佳工具。  相似文献   

6.
将PPARγ2基因启动子和报告基因荧光素酶相连接克隆于特定载体构建成表达质粒,电穿孔转染小鼠ES细胞,筛选阳性克隆.诱导ES细胞向脂肪细胞分化,通过定量检测荧光素酶活性跟踪PPARγ2基因的表达情况,以此研究脂肪细胞分化过程中该基因的表达模式.结果显示PPARγ2基因在未分化的ES细胞和EB形成的前两天中不表达,从EB形成的第3天开始表达,直至脂肪细胞分化完成.该基因在已完成分化的脂肪细胞中的表达远强于在分化中的前脂肪细胞中的表达.首次报道了从小鼠ES细胞到脂肪细胞分化过程中PPARγ2基因的表达模式,支持了PPARγ2基因为脂肪组织特异性表达基因的已有报道,并为脂肪细胞分化机理研究提供了线索.  相似文献   

7.
小鼠胚胎干细胞体外分化形成新生血管的实验研究   总被引:1,自引:0,他引:1  
目的探讨小鼠胚胎干细胞(ES)在体外向内皮细胞(ECs)分化并形成新生血管的条件及特点。方法分别建立二维和三维小鼠ES细胞分化体系,对分化细胞行血小板内皮细胞粘附分子(PECAM-1)免疫荧光染色和DiI-乙酰化低密度脂蛋白(DiI-Ac-LDL)标记,观察ECs分化及血管形成特点。结果在二维分化体系,ES细胞在无外源性生长因子存在的条件下可自发向ECs分化,ECs主要定位在分化细胞密集处,分化表现为:ECs呈集落样生长,不形成网状结构;ECs互相连接形成网状结构,PECAM-1免疫荧光染色证实为ECs网。在三维的悬浮拟胚体培养体系,ECs的分化不依赖于外源性生长因子,分化表现为条索状结构、管腔样结构及排列紊乱的细胞团三种形式。对该拟胚体的冷冻切片进行的三维图像重构显示,拟胚体中有大量的血管网形成。在三维的Ⅰ型胶原培养体系中,ES形成的拟胚体表现为出芽式血管新生,这一过程依赖于外源性生长因子混合物。结论在二维和三维ES细胞分化体系中,ECs分化及新生血管形成过程与体内相似,表现为血管生成和血管新生两种形式,因此可作为研究血管发育机制的理想模型。  相似文献   

8.
小鼠胚胎干细胞是从胚泡未分化的内部细胞团中得到的干细胞,它在体外培养的环境中具有无限增殖、自我更新以及多向分化的特性。将小鼠胚胎干细胞在体外诱导分化为肌肉细胞,并且利用这些分化得来的肌肉细胞治疗肌肉退行性疾病,是干细胞研究领域的热点。该实验的目的在于筛选小鼠胚胎干细胞向骨骼肌细胞定向分化的实验条件,有效地将体外单层贴壁培养的小鼠胚胎干细胞诱导分化成骨骼肌细胞。最终发现,10-8mol/L维甲酸(retinoid acid,RA)+0.5%二甲基亚砜(dimethyl sulfoxide,DMSO)组诱导小鼠胚胎干细胞在体外分化成骨骼肌前体细胞的效率最高,分化得到的骨骼肌前体细胞经进一步纯化,能分化为多核的肌管。该实验为治疗肌肉退行性疾病提供了细胞来源,也为研究小鼠胚胎干细胞分化为骨骼肌细胞的机制提供了有利的条件。  相似文献   

9.
胚胎干细胞作为一种具有多潜能和高度自我更新能力的种子细胞,己被广泛地应用于医学研究领域。在体外培养条件下,胚胎干细胞可被诱导分化为三个胚层来源的组织细胞,故被看作为最具有应用前景的种子细胞。近年来,对于在体外培养条件下如何维持胚胎干细胞的多能性即使其较长时期的处于未分化状态成为研究热点,其中一些天然存在或人工合成的小分子物质可通过作用于某些特定的靶信号通路,调控胚胎干细胞的分化命运。本文概述了几种小分子物质的最新研究进展,并对小分子物质在成体多分化潜能胚胎样干细胞分化调控方面的应用前景进行评述。  相似文献   

10.
干细胞是一类具有多向分化潜能的细胞群,如胚胎干细胞(embryonic stem cell,ESC)、诱导多潜能干细胞(induced pluripotent stem cell,i PSC)等,可在特定的条件下向包括视网膜感光细胞在内的多种细胞分化。小分子化合物是一类由组织细胞合成、分泌的小分子多肽类因子,特定的小分子化合物可作用于干细胞诱导其向视网膜感光细胞分化。目前,对干细胞体外培养,通过使用不同的诱导培养方案,探索干细胞向视网膜感光细胞分化的研究成为热点。早期,研究者们主要在共培养条件下采用小分子化合物诱导ESC向视网膜感光细胞分化,随着研究的进展,逐渐开始探索在无共培养条件下小分子化合物诱导ESC向视网膜感光细胞的分化以及小分子化合物诱导i PSC向视网膜感光细胞的分化。本文主要就小分子化合物促进ESC和i PSC向视网膜感光细胞分化的研究进展进行综述。  相似文献   

11.
12.
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation, and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%, but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single, larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture, or aggregates of ES cells in hanging drop culture, they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus, initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however, hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension, whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient, scalable bioprocesses for ES cell differentiation, and inform novel methods for the production of hematopoietic tissues.  相似文献   

13.
Wang XL  Wang CY  Yu XJ  Zhao YS  Li J  Duan CM  Guo XM 《生理学报》2005,57(4):486-492
以小鼠胚胎干细胞(ES-D3)为模型,应用新型细胞培养系统——STLV型旋转生物反应器(rotarycellculturesystem,RCCS)建立一种批量制备拟胚体(embryoidbodies,EBs)的新方法,研究不同细胞接种密度及培养时间对RCCS内EBs产生效率的影响。为了进一步研究该制备方法是否对EBs的分化潜能产生影响,对照传统方法制备的EBs,利用形态学及RT-PCR方法测定经旋转生物反应器制备的EBs在自发性或诱导条件下(1%DMSO)向心肌细胞的分化能力。结果表明:ES-D3在RCCS内能够高效形成EBs,与传统的直接悬浮法比较,其EBs的形成效率可达到后者的2倍。1×104个/ml为最佳细胞接种密度,培养时间也是在RCCS制备EBs过程中的重要因素之一,培养第4~5天为最佳收获EBs的时间。与悬滴法制备的EBs比较,该方法制备的EBs分化为心肌细胞的潜能未改变。由此,应用旋转生物反应器可以高效制备EBs,该方法制备的EBs可以用于发育生物学等基础及应用领域的相关研究。  相似文献   

14.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

15.
16.

Background  

Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs  相似文献   

17.
Embryonic stem (ES) cells have the ability to differentiate into all germ layers, holding great promise not only for a model of early embryonic development but also for a robust cell source for cell-replacement therapies and for drug screening. Embryoid body (EB) formation from ES cells is a common method for producing different cell lineages for further applications. However, conventional techniques such as hanging drop or static suspension culture are either inherently incapable of large scale production or exhibit limited control over cell aggregation during EB formation and subsequent EB aggregation. For standardized mass EB production, a well defined scale-up platform is necessary. Recently, novel scenario methods of EB formation in hydrodynamic conditions created by bioreactor culture systems using stirred suspension systems (spinner flasks), rotating cell culture system and rotary orbital culture have allowed large-scale EB formation. Their use allows for continuous monitoring and control of the physical and chemical environment which is difficult to achieve by traditional methods. This review summarizes the current state of production of EBs derived from pluripotent cells in various culture systems. Furthermore, an overview of high quality EB formation strategies coupled with systems for in vitro differentiation into various cell types to be applied in cell replacement therapy is provided in this review. Recently, new insights in induced pluripotent stem (iPS) cell technology showed that differentiation and lineage commitment are not irreversible processes and this has opened new avenues in stem cell research. These cells are equivalent to ES cells in terms of both self-renewal and differentiation capacity. Hence, culture systems for expansion and differentiation of iPS cells can also apply methodologies developed with ES cells, although direct evidence of their use for iPS cells is still limited.  相似文献   

18.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.  相似文献   

19.
This protocol describes a co-culture system for the in vitro differentiation of mouse embryonic stem cells into hepatocyte-like cells. Differentiation involves four steps: (i) formation of embryoid bodies (EB), (ii) induction of definitive endoderm from 2-d-old EBs, (iii) induction of hepatic progenitor cells and (iv) maturation into hepatocyte-like cells. Differentiation is completed by 16 d of culture. EBs are formed, and cells can be induced to differentiate into definitive endoderm by culture in Activin A and fibroblast growth factor 2 (FGF-2). Hepatic differentiation and maturation of cells is accomplished by withdrawal of Activin A and FGF-2 and by exposure to liver nonparenchymal cell-derived growth factors, a deleted variant of hepatocyte growth factor (dHGF) and dexamethasone. Approximately 70% of differentiated embryonic stem (ES) cells express albumin and can be recovered by albumin promoter-based cell sorting. The sorted cells produce albumin in culture and metabolize ammonia, lidocaine and diazepam at approximately two-thirds the rate of primary mouse hepatocytes.  相似文献   

20.
Here, we show that spermine can induce the generation of a multi-layer muscle fiber sheet (MMFS) in mouse embryonic stem (ES) cells. ES cells were cultured by the hanging drop method and embryoid bodies (EBs) that formed after 2 days of culture were transferred to a 24-well dish (1 EB/well) containing differentiation medium. EBs cultured in the absence of spermine showed no evidence of differentiation of contractile muscle fibers. In contrast, the addition of spermine (0.5-1.0 mM) for 24 hr on day 12 of culture was found to result in the formation of contractile muscle fibers around the EBs by day 17, with further differentiation into MMFS by day 32. We found that spermine could only induce muscle cell differentiation in EBs during a limited period of culture. Moreover, high concentrations of spermine inhibited muscle fiber generation. Histochemical analysis showed that the MMFS induced by spermine had a heterogeneous architecture. Heart muscle cells appeared to be predominant in some regions, as evidenced by the expression of the markers atrial natriuretic peptide (ANP) and connexin 40 (Cx40), while skeletal muscle appeared to predominate in other regions, as indicated by the expression of MyoD. DNA array analysis showed specific enhancement of expression of muscle cell genes, supporting our conclusion that spermine induces differentiation of muscle cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号