首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
微生境选择分化是生境相似的物种间共存的重要原因。社鼠和大林姬鼠为北京东灵山地区常见鼠种,生境需求、活动节律及食物组成等相似,但二者共存的原因尚不清楚。2016—2017年,我们对北京东灵山地区社鼠和大林姬鼠的微生境选择进行了研究。不同季节和生境类型中,社鼠和大林姬鼠微生境选择存在明显分化。灌丛生境中,春季社鼠偏好于乔木密度、草本盖度更高和落叶盖度相对偏低的微生境,而大林姬鼠选择郁闭度、落叶盖度较高而草本盖度较低的微生境;主成分分析表明,地表覆盖物是影响二者微生境选择的主要因素;秋季社鼠喜好乔木种类多、灌木密度和草本盖度更高的微生境,而大林姬鼠选择乔木胸径、灌木距离、落叶盖度和空地比例更高的微生境,食物丰富度是影响社鼠和大林姬鼠微生境选择的主要因素。弃耕地生境中,春季社鼠倾向于灌木密度和草本盖度较高的微生境,而大林姬鼠首选郁闭度、乔木胸径、落叶盖度较大而草本盖度较低的微生境,地表覆盖物是影响二者微生境选择的主要因素;秋季社鼠偏好郁闭度和落叶盖度都相对较低的微生境,大林姬鼠则相反,食物多度是影响二者微生境选择的主要因素。次生林生境中,春季因样本量太少,未作分析;秋季社鼠优先选择灌木密度、灌木基径和草本盖度更高的微生境,大林姬鼠更倾向乔木胸径、落叶盖度较高,而灌木密度、草本盖度较低的微生境,地表覆盖物是影响二者微生境选择的主要因素。结果表明,不同生境和季节,两种鼠的微生境选择具有明显分化,这可能是二者共存的重要原因之一。  相似文献   

2.
盗食现象在贮食动物中非常普遍,种内竞争者或种间竞争者的盗食是贮藏食物丢失的主要原因之一,同时也是贮食动物贮食行为不断进化的重要选择压力,开展反盗食贮食策略的研究有助于阐释贮食行为进化的原因和对贮食鸟类的保护。杂色山雀(Parus varius)秋季有明显的贮食行为,贮食方式为分散贮食。通过人为投食的方法,以投食点为中心,根据贮食点距投食点距离远近设定了被盗高风险区、被盗中风险区和被盗低风险区,研究杂色山雀个体在无潜在盗食者和有潜在盗食者的情况下,在上述3个风险区贮食比例的变化,探讨杂色山雀个体基于自身以及周围环境条件,在权衡取食及贮藏过程中时间及能量的花费和收益后,其反盗食贮食策略的选择。40只杂色山雀个体贮食策略的统计结果表明,不论潜在盗食者出现与否,杂色山雀个体贮食的总体趋势大致相同,即主要将食物贮藏在中风险区,而高风险区和低风险区贮食比例较低;比较种间和种内潜在盗食者出现的情况下与无潜在盗食者时,杂色山雀个体在各贮食风险区的贮食策略:种间及种内潜在盗食者的出现,都会引起被盗高风险区贮食比例降低(种间潜在盗食者:F=3.174,P0.05;种内潜在盗食者:F=90.475,P0.05),低风险区贮食比例上升(种间潜在盗食者:F=220.440,P0.05;种内潜在盗食者:F=15.651,P0.05);但种间潜在盗食者出现时,杂色山雀个体在被盗中风险区的贮食比例降低(F=143.749,P0.05),而种内潜在盗食者出现时,杂色山雀个体在被盗中风险区贮食比例不变(F=0.776,P0.05),即杂色山雀个体对种间潜在盗食者的出现更加敏感,防范盗食的投入更大。此外,分别比较无潜在盗食者、有种间潜在盗食者和有种内潜在盗食者存在的情况下,雌雄杂色山雀个体在各贮食风险区的反盗食贮食策略,发现其结果也明显不同。无潜在盗食者和种内潜在盗食者出现时,雄性杂色山雀为预防灾难性盗食发生而付出的努力较雌性个体高(无潜在盗食者:高风险区t=4.962,df=16.546,P0.05;中风险区t=﹣0.890,df=29.255,P0.05;低风险区t=﹣2.166,df=30,P0.05。有种内潜在盗食者:高风险区t=﹣0.152,df=29,P0.05;中风险区t=2.352,df=19.568,P0.05;低风险区t=﹣2.287,df=19.563,P0.05);种间潜在盗食者出现时,雌雄杂色山雀反盗食贮食策略趋于一致(高风险区t=1.361,df=29,P0.05;中风险区t=﹣0.194,df=21.529,P0.05;低风险区t=﹣1.599,df=29,P0.05)。  相似文献   

3.
食物资源是动物赖以生存的重要物质基础和能量来源。研究鸟类不同时期的食物选择和利用对于了解该物种取食行为的可塑性和生态适应性将具有重要意义。本文于2012年4月至2013年10月,通过取食行为观察、育雏分析和投食实验来研究杂色山雀(Parus varius)繁殖期与非繁殖的食物组成及利用的差别。结果发现,杂色山雀繁殖期与非繁殖期存在显著的食物差别,繁殖期完全取食动物性食物,而非繁殖期则以植物性食物为主,兼食少量昆虫。繁殖期成鸟取食的食物主要为鳞翅目、蜘蛛目、鞘翅目、双翅目以及少量的直翅目、异翅亚目以及膜翅目动物,育雏的食物资源主要为鳞翅目幼虫(67.86%),其次为蜘蛛目、鳞翅目成虫、膜翅目以及鞘翅目幼虫和少量直翅目,但与成鸟的食物存在显著区别,特别是鳞翅目幼虫的比例极高。非繁殖期的食物主要以植物种子(48.91%)和浆果为主(51.09%),其中,浆果的比例较高,对16种潜在食物资源的取食选择也证明对浆果类食物具有较明显的偏爱。杂色山雀不同时期的食物差别和食性的可塑性可能是由于食物供给和能量需求的季节性变化造成的,但对于自然生境中各种食物资源丰富度的季节性变化,及对杂色山雀取食选择的影响还需进一步研究。  相似文献   

4.
掌握麋鹿种群冬季卧息地的微生境特征,可为冬季麋鹿种群的科学保护和有效管理提供理论依据.2011年12月-2012年2月,通过对61个利用样方和70个对照样方的比较调查,研究了湖北石首麋鹿国家级自然保护区内麋鹿冬季卧息地微生境选择.结果表明,湖北石首麋鹿国家级自然保护区内麋鹿冬季主要选择在食物丰富、植被盖度大、隐蔽度高的生境卧息.主成分分析表明,影响冬季麋鹿卧息地微生境选择的决定性因子是食物因子、温度因子、舒适因子.本研究分析了麋鹿种群对冬季卧息地生态因子选择的要求和原因,对麋鹿自然野化、种群就地与迁地保护均具有十分重要的意义.  相似文献   

5.
凉水自然保护区松鼠和星鸦贮食生境选择差异   总被引:9,自引:2,他引:7  
宗诚  陈涛  马建章  宣立锋 《兽类学报》2007,27(2):105-111
2003 年9 月30 日~2005 年10 月8 日,在黑龙江凉水国家级自然保护区,应用样方调查法, 采用Vanderploeg和Scavia 选择系数Wi和选择指数Ei作为衡量指标,对松鼠和星鸦贮食生境选择进行了研究。结果表明, 二者贮食生境选择优先顺序略有不同,松鼠偏爱的贮食生境依次是: 云杉林、原始红松林、人工红松林、针阔混交林、人工云杉林、白桦林、针叶混交林、人工落叶松林、阔叶混交林、冷杉林和其它。星鸦对贮食生境的偏爱程度依次为: 人工红松林、原始红松林、云杉林、人工云杉林、针阔混交林、阔叶混交林、白桦林、针叶混交林、人工落叶松林、冷杉林和其它。在对贮食微生境因子的选择利用上, 二者大致相同,只是在对优势灌丛的选择上略有差异, 松鼠优先选择在狗枣猕猴桃优势灌丛内贮藏红松种子, 而星鸦优先选择在刺五加优势灌丛内贮食。松鼠和星鸦贮食生境选择的差异将对随后的红松天然更新过程产生不同的影响。  相似文献   

6.
应用地统计学及限制性排序分析方法,对海南霸王岭陆均松(Dacrydium pectinatum)幼苗、幼树、成树及其微生境因子的空间分布特征进行分析。结果表明:1)陆均松不同生活史阶段空间分布格局存在明显差异,幼苗阶段表现为聚集性分布,具有显著的空间自相关结构,聚集强度随年龄增长呈逐渐减弱趋势;2)RDA分析表明,陆均松空间分布格局与微生境因子的关系在不同生活史阶段存在差异,生境过滤的影响会随着生活史阶段的不同而有所差别;3)微生境变量对陆均松幼苗、幼树、成树空间变异的总解释量分别为78.4%、41.2%、33.6%,微生境因素对陆均松分布的限制作用主要集中在幼苗阶段;4)在大尺度条件下,PCNM变量与微生境变量具有较大的共同解释量(22.2%),存在典型的"诱导空间变差"现象,微生境变量空间变化引起响应变量即陆均松幼苗、幼树、成树的分布产生类似的空间结构。研究结果证实了微生境因子与不同生活史阶段陆均松分布的关联性,为深入理解陆均松种群维持机制、空间分布格局、更新动态与生境的关系提供科学依据。  相似文献   

7.
曹铭昌  刘高焕  徐海根 《生态学报》2011,31(21):6344-6352
生境在鸟类生活史中发挥着重要的作用,关系到鸟类的生存和繁衍。由于鸟类对环境变化的响应发生在等级序列空间尺度上,基于多尺度的研究更能深入刻画鸟类-环境之间关系。以丹顶鹤(Grus japonensis)为研究对象,以其迁徙和越冬的重要地区-黄河三角洲自然保护区为研究区域,应用等级方差分解法和等级划分法,分析丹顶鹤与微生境、斑块、景观尺度因子之间的关系,探求丹顶鹤生境选择的主要影响因素和尺度。等级方差分解结果表明,在第1等级水平,景观尺度因子与微生境、斑块尺度因子之间的联合效应大于独立效应,景观尺度因子的独立效应大于微生境和斑块尺度因子;在第2等级水平,景观尺度上的景观组成因子重要性大于景观结构因子,微生境尺度上的植被和水分因子为重要影响因素。等级划分结果表明,景观尺度上,翅碱蓬滩涂、水体面积大小是主要影响因素;微生境尺度上,植被盖度和水深为主要限制因子;在斑块尺度上,斑块类型对丹顶鹤生境选择最为重要。研究认为,在黄河三角洲自然保护区,景观尺度是影响丹顶鹤生境选择的主要尺度,景观尺度因子通过与微生境和斑块尺度因子的独立和联合作用制约着丹顶鹤在保护区的生境选择和空间分布格局。建议加强对翅碱蓬滩涂、芦苇沼泽、水体等湿地生境的保护和管理,规范和控制保护区内人类活动强度。  相似文献   

8.
动物的生境选择具有空间尺度依赖性, 在不同空间尺度上影响生境选择的环境因素有所不同。研究不同空间尺度下动物生境选择的关键影响因子及其季节性变化, 对于全面了解物种的生境资源需求和开展生境保护具有重要意义。绿尾虹雉(Lophophorus lhuysii)是中国特有的高山雉类, 国家一级重点保护野生动物, 具有极高的保护价值。然而, 目前尚未对其不同尺度和时期的生境选择进行过探究。本研究于2019年10月至2020年10月, 在四川卧龙国家级自然保护区的羊角湾、魏家沟和文扎都3个区域共布设15条样线、303个样方, 并结合红外相机监测(176个红外相机位点), 对保护区内绿尾虹雉种群的生境利用状况进行了调查, 使用主成分分析和逻辑斯蒂回归模型分别从景观和微生境两个尺度对繁殖期(3‒8月)和非繁殖期(9月至翌年2月)的生境选择模式进行了分析。结果显示, 在景观尺度上, 在繁殖期和非繁殖期都显著偏好海拔较高(3,700‒ 4,300 m)、坡度较小(27°‒33°)、靠近阳坡、草甸和流石滩比例较高而森林和灌丛比例较低的生境。在微生境尺度上, 绿尾虹雉在繁殖期显著偏好岩石盖度较高的生境; 而非繁殖期则显著偏好草本盖度较高、灌木盖度和落叶盖度较低的生境。研究表明, 绿尾虹雉在景观和微生境尺度上均对生境有明显的选择性, 并且其微生境选择还存在季节性变化, 反映了该物种在生活史不同阶段具有不同的资源需求。本研究丰富了绿尾虹雉的基础生态学信息, 为卧龙及其他自然保护区绿尾虹雉的生境管理和种群保护工作提供了参考。  相似文献   

9.
本文研究了秋冬季节淡水大米草(Spartina densiflora)沼泽中野生豚鼠(Cavia a perea)的丰度、繁殖和微生境利用,以及其对当地植被和棉鼠类(Sigmodontine)啮齿动物的影响。野生豚鼠喜好S.densiflora覆盖度高的生境。繁殖个体(成体)主要利用矮草为主的斑块,幼体则主要利用禾本科植物为主的斑块。结果说明,野生豚鼠微生境的利用受捕食风险和食物种类的影响。在淡水沼泽中,野生豚鼠的丰度、繁殖、体重和微生境利用没有季节性变化,它们对植物的取食和活动跑道的建造对植被结构和同域的啮齿类动物没有负面影响。通过对具有中度季节性变化的淡水生境中的豚鼠种群和具有高度季节变化的草地和路边中的豚鼠种群进行比较,表明野生豚鼠的种群动态以及豚鼠种群对植被和与其共生的啮齿动物群落的影响都受到冬季植被盖度的限制。  相似文献   

10.
刘继亮  李锋瑞  刘七军  牛瑞雪 《生态学报》2010,30(23):6389-6398
关于西北干旱区荒漠灌丛草地地面甲虫群落分布与微生境关系的系统研究尚鲜有报道。采用多元回归分析和RDA群落排序分析等方法,定量研究了甲虫群落分布与微生境因子的关系及其季节变异特征。多元回归分析表明,甲虫群落数量分布与土壤粗砂、中细砂和粘粉粒含量存在显著关系,3个因子解释了21%的甲虫群落变异。多元回归分析还表明,甲虫群落数量分布与春季地面/地下日平均温度和土壤含水量有显著关系(3个因子解释了32%的甲虫群落变异),而与夏季和秋季地面/地下日平均温度和土壤含水量无显著关系。RDA群落排序分析表明,土壤粗砂含量、中细砂含量、地面温度和地下温度对春季甲虫种群分布有显著的影响,解释了34.3%的甲虫种群变异;土壤粗砂和中细砂含量对夏季甲虫种群分布有显著影响,解释了18.8%的甲虫种群变异;土壤粗砂含量、地下日均温和土壤含水量对秋季甲虫种群分布有一定的影响,解释了17.1%的甲虫种群变异。Pearson相关分析表明不同甲虫种群对微生境因子的响应模式不同。主要结论是:微生境的非生物环境因子是决定荒漠甲虫群落空间分布格局的重要因子之一,但是环境因子的影响作用存在明显的季节变异,并且因种类不同而异。  相似文献   

11.
Social influences on food caching in willow tits: a field experiment   总被引:5,自引:1,他引:4  
We studied the food hoarding behavior of willow tits (Parusmontanus), a scatter-hoarding passerine wintering in dominance-structuredflocks. We examined social influences on microhabitat selectionand spatial cache distribution at temporary feeders. Dominantadult males stored food closer to die feeder and at a greaterrate than did subordinates. When alone, the birds stored foodcloser to the feeder than when accompanied by conspecifics.Conifers were preferred over deciduous trees as cache trees.The subordinates cached more in die outer parts of branchesthan dominants. There were no significant differences in dierelative or absolute heights of die caches, nor in the verticalor horizontal hoarding niche breadths between dominants andsubordinates. We experimentally removed die dominants from dieflock for 90 min and recorded the behavior of die remainingsubordinates immediately after die removal. The removal resultedin a decrease in die hoarding distance of die remaining birds,indicating that die presence of dominants directly affecteddie behavior of subordinates and suggesting that kleptopar-asitismby dominants may be prevented by rarhing farther away. Withdie dominants removed, die subordinates cached at a greaterrate than before die removal. The decrease in die hoarding distanceand increase in die hoarding rate were die only significanteffects of die experiment, perhaps suggesting that, during ashort absence of dominants, die subordinates do not benefitfrom changing dieir caching microhabitat They might be excludedfrom those new, possibly safer, microhabitats after die dominantbird rejoins die flock.  相似文献   

12.
Marsh tits store several hundred food items per day, in separate locations within their territory, and recover most items within 24 h. Experiments in the laboratory determined that marsh tits return accurately to the sites of stored sunflower seeds 3 h and 24 h after storage. The proportion of returns exceeded chance encounter and initial preferences for those sites. The lack of interocular transfer in birds for some visual tasks provided a test for the hypothesis that memory is used to relocate stored food. After storing food with one eye covered, marsh tits did not return to storage sites when using only the ‘naive’ eye, but did so when using only the eye uncovered during storage. It seems likely that recovery of stored food by marsh tits and other birds occurs by memory of storage sites, not by chance encounter during foraging.  相似文献   

13.
Earlier reports suggested that seasonal variation in food-caching behavior (caching intensity and cache retrieval accuracy) might correlate with morphological changes in the hippocampal formation, a brain structure thought to play a role in remembering cache locations. We demonstrated that changes in cache retrieval accuracy can also be triggered by experimental variation in food supply: captive mountain chickadees (Poecile gambeli) maintained on limited and unpredictable food supply were more accurate at recovering their caches and performed better on spatial memory tests than birds maintained on ad libitum food. In this study, we investigated whether these two treatment groups also differed in the volume and neuron number of the hippocampal formation. If variation in memory for food caches correlates with hippocampal size, then our birds with enhanced cache recovery and spatial memory performance should have larger hippocampal volumes and total neuron numbers. Contrary to this prediction we found no significant differences in volume or total neuron number of the hippocampal formation between the two treatment groups. Our results therefore indicate that changes in food-caching behavior and spatial memory performance, as mediated by experimental variations in food supply, are not necessarily accompanied by morphological changes in volume or neuron number of the hippocampal formation in fully developed, experienced food-caching birds.  相似文献   

14.
Reciprocal pilferage and the evolution of food-hoarding behavior   总被引:6,自引:0,他引:6  
Current theories of food-hoarding behavior maintain that hoardingcan be adaptive if a hoarder is more likely than any other animalto retrieve its own caches. A survey of the literature indicatedthat the hoarder often has a recovery advantage when searchingfor items it has stored, but levels of cache pilferage are oftenso high (2–30% per day) that at least for some long-termfood hoarders, the caching animal is unlikely to recover a significantamount of its stored food. Except in a few cases (acorn woodpeckersand beavers), kin selection cannot explain the high levels ofpilferage observed. We suggest that some small solitary animalswith overlapping home ranges (e.g., most rodents, chickadees,and tits) are able to tolerate high levels of cache pilferage.Pilferage is not as damaging to these animals as it might otherwisebe because many interspecific and all intraspecific cache pilferersalso cache food. These or similar food caches can be pilferedlater by the original food hoarder. In other words, pilferingin these species is often reciprocal, and because it is reciprocal,it can be tolerated. We argue that caching systems based onreciprocal pilfering can be stable and are not necessarily susceptibleto "cheaters," animals that pilfer food but do not scatter hoardfood themselves, and we introduce a model of food hoarding tosupport this argument. These food-caching systems based on reciprocalpilfering resemble cooperative behavior, but the behavior isactually driven by the selfish interests of individuals. Thistheory of scatter-hoarding behavior based on reciprocity hasimportant implications for the ways that food-hoarding animalsinteract with inter- and intraspecific competitors.  相似文献   

15.
In seasonal environments variation in food abundance in the non‐breeding season is thought to affect songbird population dynamics. In a unique tit‐sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed.  相似文献   

16.
ABSTRACT

Capsule: Wintering male Bull-headed Shrikes Lanius buchepalus preferred vegetable fields with perch sites to search for and detect terrestrial prey, and males occupying territories with large areas of vegetable fields acquired more prey and cached more food.

Aims: To better understand effects of habitat use on food acquisition and food caching of the Bull-headed Shrike, we investigated relationships between habitat quality (measured through foraging-site selection and foraging success) and food caching during the non-breeding season.

Methods: We monitored 66 territorial male shrikes during the non-breeding season from 2014 to 2016, and collected data on foraging-site selection, foraging success, and food caching.

Results: Our field observations showed that male shrikes preferred to forage over vegetable fields and that males occupying territories incorporating large areas of that habitat were able to acquire more food items and store more food caches in their territories during the nonbreeding season.

Conclusion: We suggest that for male Bull-headed Shrikes, a winter-breeding food-storing passerine, the quality of habitat in the nonbreeding season has the potential to affect their subsequent fitness.  相似文献   

17.
Seasonal patterns of food storing in the Jay Garrulus glandarius   总被引:1,自引:0,他引:1  
N. S. CLAYTON  R. MELLOR  A. JACKSON 《Ibis》1996,138(2):250-255
This study investigated seasonal patterns in food consumption and food storage in six captive Jays Garrulus glandarius. In the first experiment, seasonal changes in food-storing intensity were tested by presenting acorns (oak seeds, Quercus spp.) in spring, summer and autumn. There were no significant differences between the seasons in the amount of food eaten. However, significantly more food was taken and stored in the autumn than in the spring and summer months. In the spring and summer, the acorns were stored between the doorframes, on the ledges of the aviaries and under the bark of branches. In the autumn, Jays also began to hoard underneath the plastic sheeting covering the hard-board flooring by ripping the polythene to create a hidden cache site. The length of time over which the stored food was left before retrieval increased from summer to autumn. Food storing also occurred in spring and summer but was short term. The second experiment tested whether or not there were seasonal changes in food preference by presenting birds with acorns, peanuts and mealworms in the summer and autumn. More peanuts were eaten, taken and stored in the autumn than in the summer, and, as in the first experiment, significantly more acorns were taken and stored in the autumn. In the autumn, only a few mealworms were eaten before the birds stored acorns and peanuts, whereas in the summer, birds tended to eat most of the mealworms before they began to store. As in the first experiment, items tended to be buried in the ground in the autumn and left for longer periods before retrieval. These results are discussed in relation to the demand that each food type places on the Jay's time.  相似文献   

18.
We analysed whether patterns of microhabitat use by Blue Tits Parus caeruleus , Great Tits Parus major and Crested Tits Parus cristatus inhabiting a mixed forest consistently matched the patterns of food availability experienced by foraging birds during spring-summer. The use of five microhabitats by each bird species (the foliage of three tree species, shrubs and ground) and the availability of food in trees during the prebreeding, breeding and post-breeding periods of the birds' annual cycle were measured. All three tit species foraged mainly in the outer part of tree canopies (small branches and leaves or needles). Tit distributions between tree species matched food resource distributions irrespective of overall food resource levels, which varied four-fold between the study periods, and tit species. Tits also exploited secondary microhabitats (shrubs and ground) in periods of low food availability; Blue Tits tended to use shrubs, whereas Great and Crested Tits foraged on the ground. Between-trees distributions fitted that expected from an ideal free distribution, suggesting that food availability and intraspecific exploitative competition were the main factors governing tree use by tits. In contrast, patterns of use of secondary microhabitats (shrubs and ground) seemed to indicate a role for the species-specific morphological configurations of each tit species since Blue Tits are better adapted to hang and tended to forage in shubs, whereas Great and Crested Tits are better adapted to feed on horizontal surfaces and tended to forage on the ground. No evidence of interspecific interactions was observed. Overall, the results pointed to an independent exploitation of Mediterranean mixed forest by each bird species, food availability and food accessibility being the main factors affecting microhabitat use by foraging tits.  相似文献   

19.
During the breeding season, great tits show aggression to protect their nest from intra‐ and interspecific intruders. Aggression is a labile trait that can be plastically expressed as a result of individual differences (e.g., personality), seasonal gradients in the costs and benefits of aggression, or other environmental components (e.g., number of competitors). Competitors may try to take over great tit nests, because the number of suitable nesting sites is limited, and great tits may guard high quality territories. Taking over a great tit nest may be especially fruitful in early phenological stages (egg laying) when great tits frequent their nests less often. However, great tits may compensate for this vulnerability by being more aggressive toward intruders during early nesting stages, a pattern that has already been established in an intraspecific context. Previous studies have shown that interspecific intruders were most likely to die from great tit aggression during great tit egg laying, suggesting great tits may also be more aggressive during this phase in an interspecific context. Here, I tested this hypothesis with simulated territorial intrusions in great tit territories using taxidermized blue tits Cyanistes caeruleus (hereafter called blue tit models). Great tit aggression (number of calls and approach distance toward blue tit model) was assayed during egg laying, incubation, and chick rearing in the breeding season of 2014. Although sample size was low due to a high fraction of non‐responders (n = 44 out of 89 assays across 26 out of 35 individuals), I found that great tits showed a seasonal decline in aggressiveness, which is congruent with intraspecific results on this study species. I discuss my findings in the context of differential adjustment to climate change between interspecific competitors.  相似文献   

20.
We studied the diet and food availability of a group of Sichuan snub-nosed monkeys for 14 months (July 2003 to September 2004, except for February) in the Shennongjia Nature Reserve, China. This species is primarily a lichen eater, with lichens (Usneaceae) accounting for 43.28% of feeding records (n=3,452). Other food types in the diet were young leaves (28.71%), fruits or seeds (14.57%), buds (5.36%), mature leaves (3.51%), herbs (2.09%), bark (1.36%), and flowers (1.13%). The monkeys used 23 plant species. Their diet showed a complicated seasonal variation: the monthly diet varied from primarily lichens in November-April, to a mixture of leaves and lichens in May-July, to a mixture of fruits or seeds and lichens in August-October (the latter depended on annual fruit and seed availability). The proportion of fruits or seeds in the diet was negatively correlated with that of lichens, which suggests that the monkeys prefer fruits or seeds to lichens when all of these items are available. The fruit or seed availability varied greatly between the two study years. The proportion of lichens, young leaves, flowers, and fruits or seeds in the diet was positively associated with their availability. The monkeys appeared to be selective feeders. They preferred 10 tree species for plant parts, and nine tree species for lichens. The selection index of tree species for lichens was positively related to lichen coverage per branch on tree species, demonstrating that the monkeys preferred tree species with abundant lichens, as well as dead trees for lichens. The results suggest that dead-tree harvesting in the reserve could significantly reduce the quality of habitat for these monkeys, and should therefore be prohibited. Connus controversa, Cerasus discadenia, Salix willichiana, and Malus halliana should be conserved as top priority species because the monkeys preferred them for both their vegetative parts and the lichens that grow on them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号