首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
8-hydroxyguanine (8-oxoguanine; oh8Gua) DNA glycosylase (OGG1) repairs oh8Gua, a highly mutagenic oxidative DNA damage. In the present study, we compared two strains of senescence-accelerated mouse (SAM) expressing senescence-prone phenotypes, SAMP1 and SAMP8, with one strain of SAM expressing senescence-resistant phenotype, SAMR1. We found three distinct characteristics of OGG1 in SAMPs: (i) low activity (10-40% of the SAMRI enzyme in all organs and ages observed), (ii) thermolability, and (iii) mutation from Arg (CGG) in SAMR1 to Trp (TGG) at codon 304. There was no difference in the levels of mRNA and protein. As expected, oh8Gua level in tissues was higher in the SAMPs. In contrast, O6-methylguanine-DNA methyltransferase, which repairs alkylated DNA, showed no difference in its activity. The impairment of oh8Gua repair activity caused by the 304 mutation in OGG1 may be one of the factors contributing to the high somatic mutation rate and the accelerated senescence observed in these strains.  相似文献   

2.
The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.  相似文献   

3.
The Senescence-Accelerated Mouse (SAM) strains constitute a murine model of accelerated senescence originating from the ancestral AKR/J strains and consist of nine senescence-prone (SAMP) strains and four senescence-resistant (SAMR) strains. The chromosomes (Chrs) of the SAM strains were typed with 581 microsatellite markers amplified by PCR, and the fundamental genetic information of the SAM strains was obtained. One-third of the examined markers displayed polymorphism among the strains, and only two alleles were detected in almost all loci among the SAM and AKR/J strains. However, in 12 loci (5.6% of total 215 polymorphic markers), the third allele was detected among the SAM strains. The genetic typing and developmental history suggested that the SAM strains were related inbred strains developed by the accidental crossing between the AKR/J strain and other unknown strain(s). Comparison of the distribution of the loci in the SAMP and the SAMR series revealed notable differences in the four regions on Chrs 4, 14, 16, and 17. This indicated that some of these chromosomal sites might contain the genes responsible for accelerated senescence in the SAMP series. Received: 17 July 1998 / Accepted: 17 November 1998  相似文献   

4.
Damage to mitochondria as a result of the intrinsic generation of free radicals is theoretically involved in the processes of cellular aging. Herein, we investigated whether acutely administered melatonin, due to its free radical scavenging activity, would influence mitochondrial metabolism. Mitochondrial respiratory activity and respiratory chain complex I and IV activities in liver mitochondria from a strain of senescence-accelerated-prone mice (SAMP8) and a strain of senescence-accelerated-resistant mice (SAMR1) were measured when the animals were 12 months of age. Respiratory control index (RCI), ADP/O ratio, State 3 respiration and dinitrophenol (DNP)-dependent uncoupled respiration were significantly lower in SAMP8 than in SAMR1. In contrast, State 4 respiration was significantly higher in SAMP8 than in SAMR1. Activities of complexes I and IV in SAMP8 were significantly lower than in SAMR1. Melatonin administration (10mg/kg body weight, intraperitoneally) 1h prior to sacrifice significantly increased RCI, ADP/O ratio, State 3 respiration and DNP-induced uncoupled respiration in SAMP8 while also significantly reducing State 4 respiration in SAMP8. The injection of melatonin also significantly increased complex I activity in both mouse strains and complex IV activity in the liver of SAMP8 mice. These results document an age-related decrease in hepatic mitochondrial function in SAM which can be modified by an acute pharmacological injection of melatonin; the indole stimulated mitochondrial respiratory chain activity which would likely reduce deteriorative oxidative changes in mitochondria that normally occur in advanced age.  相似文献   

5.
The senescence-accelerated mouse (SAM) was developed by selective breeding of the AKR/J strain, based on a graded score for senescence, which led to the development of both senescence-accelerated prone (SAMP), and senescence-accelerated resistant (SAMR) strains. Among the SAMP strains, SAMP6 is well characterized as a model of senile osteoporosis, but its brain and neuronal functions have not been well studied. We therefore decided to characterize the central nervous system of SAMP6, in combination with different behavioral tests and analysis of its biochemical and pharmacological properties. Multiple behavioral tests revealed higher motor activity, reduced anxiety, anti-depressant activity, motor coordination deficits, and enhanced learning and memory in SAMP6 compared with SAMR1. Biochemical and pharmacological analyses revealed several alterations in the dopamine and serotonin systems, and in long-term potentiation (LTP)-related molecules. In this review, we discuss the possibility of using SAMP6 as a model of brain function.  相似文献   

6.
The SAM strain of mice is actually a group of related inbred strains consisting of a series of SAMP (accelerated senescence-prone) and SAMR (accelerated senescence-resistant) strains. Compared with the SAMR strains, the SAMP strains show a more accelerated senescence process, a shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to human geriatric disorders. The higher oxidative stress status observed in SAMP mice is partly caused by mitochondrial dysfunction, and may be a cause of this senescence acceleration and age-dependent alterations in cell structure and function. Based on our recent observations, we discuss a possible mechanism for mitochondrial dysfunction resulting in the excessive production of reactive oxygen species, and a role for the hyperoxidative stress status in neurodegeneration in SAMP mice. These SAM strains can serve as a useful tool to understand the cellular mechanisms of age-dependent degeneration, and to develop clinical interventions. Special issue article in honor of Dr. Akitane Mori.  相似文献   

7.
In this work, metabonomic methods utilizing (1)H NMR spectroscopy and multivariate statistical technique have been applied to investigate the metabolic profiles of SAM. The serum metabolome of senescence-prone 8 (SAMP8), a murine model of age-related learning and memory deficits and Alzheimer's disease (AD), was compared with that of control, senescence-resistant 1 (SAMR1), which shows normal aging process. Serum samples were collected for study from both male and female 12-month-old SAMP8 and age matched SAMR1 ( n = 5). (1)H NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The results showed that the serum metabolic patterns of SAMP8 and SAMR1 were significantly different due to strains and genders. Subtle differences in the endogenous metabolite profiles in serum between SAMP8 and SAMR1 were observed. The most important metabolite responsible for the strain separation was lack of inosine, which meant the protective function of anti-inflammation, immunomodulation and neuroprotection might be attenuated in SAMP8. Other differential metabolites observed between strains included decreased glucose, PUFA, choline, phosphocholine, HDL, LDL, D-3-hydoxybutyrate, citrate and pyruvate and increased lactate, SFA, alanine, methionine, glutamine and VLDL in serum of SAMP8 compared with those of SAMR1, suggesting perturbed glucose and lipid metabolisms in SAMP8. Besides the differences observed between the strains, an impact of gender on metabolism was also found. The females exhibited larger metabolic deviations than males and these gender differences in SAMP8 were much larger than in SAMR1. Higher levels of VLDL, lactate and amino acids and lower levels of HDL, LDL and unsaturated lipids were detected in female than in male SAMP8. These facts indicated that the metabolism disequilibrium in female and male SAMP8 was different and this may partly explain that females were more prone to AD than males. The results of this work may provide valuable clues to the understanding of the mechanisms of the senile impairment and the pathological changes of AD, as well as show the potential power of the combination of the NMR technique and the pattern recognition method for the analysis of the biochemical changes of certain pathophysiologic conditions.  相似文献   

8.
Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV) in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1) levels of the capsid antigen CAgag in both cell lysates and culture media, 2) expression of genomic retroelements, 3) the number of virus particles, 4) titer of infectious virus, 5) morphology, 6) replication rate of cells in culture and final cell concentrations, 7) expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.  相似文献   

9.
Senescence-accelerated mice (SAMP8) have a short life span, whereas SAMR1 mice are resistant to accelerated senescence. Previously it has been reported that the Akv strain of ecotropic murine leukemia virus (E-MuLV) was detected in brains of SAMP8 mice but not in brains of SAMR1 mice. In order to determine the change of MuLV levels following scrapie infection, we analyzed the E-MuLV titer and the RNA expression levels of E-MuLV, xenotropic MuLV, and polytropic MuLV in brains and spinal cords of scrapie-infected SAM mice. The expression levels of the 3 types of MuLV were increased in scrapie-infected mice compared to control mice; E-MuLV expression was detected in infected SAMR1 mice, but only in the terminal stage of scrapie disease. We also examined incubation periods and the levels of PrPSc in scrapie-infected SAMR1 (sR1) and SAMP8 (sP8) mice. We confirmed that the incubation period was shorter in sP8 (210+/-5 days) compared to sR1 (235+/-10 days) after intraperitoneal injection. The levels of PrPSc in sP8 were significantly greater than sR1 at 210+/-5 days, but levels of PrPSc at the terminal stage of scrapie in both SAM strains were virtually identical. These results show the activation of MuLV expression by scrapie infection and suggest acceleration of the progression of scrapie pathogenesis by MuLV.  相似文献   

10.
Wang Q  Liu Y  Zou X  Wang Q  An M  Guan X  He J  Tong Y  Ji J 《Neurochemical research》2008,33(9):1776-1782
Senescence-accelerated mouse prone 8 (SAMP8) is considered as a useful animal model for age-related learning and memory impairments. Hippocampus, a critical brain region associated with cognitive decline during normal aging and various neurodegenerative diseases, appeared a series of abnormalities in SAMP8. To investigate the molecular mechanisms underlying age-related cognitive disorders, we used 2-DE coupled with MALDI TOF/TOF MS to analyze the differential protein expression of the hippocampus of SAMP8 at 6-month-old compared with the age-matched SAM/resistant 1 (SAMR1) which shows normal aging process. Two proteins were found to be markedly changed in SAMP8 as compared to SAMR1: ubiquitin carboxyl-terminal hydrolase L3 (Uchl3), implicating in cytosolic proteolysis of oxidatively damaged proteins, was down-regulated while mitofilin, a vital protein for normal mitochondria function, exhibited four isoforms with a consistent basic shift of isoelectric point among the soluble hippocampal proteins in SAMP8 compared with SAMR1. The alterations were confirmed by Western blotting analysis. The analysis of their expression changes may shed light on the mechanisms of learning and memory deficits and mitochondrial dysfunction as observed in SAMP8.  相似文献   

11.
This study was undertaken to examine whether the plasma levels of calcium-regulating hormones and bone status alter with age in male senescence accelerated mice (SAM), SAMP8. Age-matched senescence-resistant mice, SAMR1, were used as controls. The blood and femur samples were collected at 2.5 months of age (M) and then monthly from 3 to 12 M for physicochemical analyses, biochemical analyses, and the determination of hormones by radioimmunoassay. With advancing age, the plasma calcitonin (CT) levels decreased progressively, and the plasma parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3) levels increased in both SAMR1 and SAMP8. The plasma calcium concentrations were maintained within a narrow range throughout the experimental period, while the plasma phosphorus (P) concentrations decreased with age in both strains. In contrast to SAMR1, the curves of age-related changes in the plasma CT levels and P concentrations were lower, and those in the plasma PTH levels were higher in SAMP8. The femoral bone densities and calcium contents increased gradually with age from the beginning of the experiment and peaked at 6 M in both strains, then declined. Those peaks were lower in SAMP8 than in SAMR1. These results indicate that the male SAMP8 develops osteoporotic signs earlier than SAMR1, and is proved to be a satisfactory animal model for longitudinal studies related to osteoporosis for men.  相似文献   

12.
The senescence-accelerated mouse prone10 (SAMP10) strain, a model of aging, exhibits cognitive impairments and cerebral atrophy. We noticed that SAMP10/TaSlc mice, a SAMP10 substrain, have developed persistent glucosuria over the past few years. In the present study, we characterized SAMP10/TaSlc mice and further identified a spontaneous mutation in the Slc5a2 gene encoding sodium-glucose co-transporter (SGLT) 2. The mean concentration of urine glucose was high in SAMP10/TaSlc mice and increased further with advancing age, whereas other strains of senescence-accelerated mice, including SAMP1/SkuSlc, SAMP6/TaSlc and SAMP8/TaSlc or normal aging control SAMR1/TaSlc mice, exhibited no detectable glucose in urine. SAMP10/TaSlc mice consumed increasing amounts of food and water compared to SAMR1/TaSlc mice, suggesting the compensation of polyuria and the loss of glucose. Oral glucose tolerance tests showed decreased glucose reabsorption in the kidney of SAMP10/TaSlc mice. In addition, blood glucose levels decreased in an age-dependent fashion. The kidney was innately larger than that of control mice with no histological alterations. We examined the expression levels of glucose transporters in the kidney. Among SGLT1, SGLT2, glucose transporter (GLUT) 1 and GLUT2, we found a significant decrease only in the level of SGLT2. DNA sequencing of SGLT2 in SAMP10/TaSlc mice revealed a single nucleotide deletion of guanine at 1236, which resulted in a frameshift mutation that produced a truncated protein. We designate this strain as SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2). Recently, SGLT2 inhibitors have been demonstrated to be effective for the treatment of patients with type 2 diabetes (T2D). SAMP10-ΔSglt2 mice may serve as a unique preclinical model to study the link between aging-related neurodegenerative disorders and T2D.  相似文献   

13.
Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia.Abbreviations: BMI, body mass indexThe senescence-accelerated mouse strains were developed through selective breeding of AKR/J mice based on graded scores for senescence and pathologic phenotypes.44 The 9 senescence-prone (SAMP) strains all have a shortened lifespan and display an early onset of senescence after normal development and maturation, whereas the 3 senescence-resistant (SAMR) strains are resistant to early senescence and serve as controls. Among the SAMP strains, SAMP8 and SAMP10 exhibit deficits in learning and memory at a relatively early stage in their lifespan.6,30 In contrast, SAMP6 mice are considered to be a model of senile osteoporosis, with their low bone mass and slow bone loss;24 the bone mineral density of SAMP6 mice decreases after 4 mo of age.14,17Our regular measurement of body weight revealed that SAMP6 mice were significantly higher between 10 and 22 wk of age than were age-matched SAMR1 and AKR/J. Based on this observation, we decided to compare body mass indices (BMIs), blood biochemical values, and liver sections among mice of these strains at 10 and 25 wk of age, which respectively correspond to the beginning and end of a period of significant body weight gain in SAMP6 mice compared with age-matched SAMR1 and AKR/J. Increased BMIs of SAMP6 mice at 10- and 25 wk compared with those of age-matched AKR/J and SAMR1 animals would indicate obesity in the SAMP6. In addition, because osteoblasts and adipocytes are thought to share a common precursor cell, osteoporosis and enhanced adipogenesis may be related. For example, adipogenesis in the bone marrow increases with aging and during osteoporosis,15,33,34 and increased bone turnover occurs in hypercholesterolemic or dyslipidemic patients.22 Therefore obesity in SAMP6 mice might be due at least in part to enhanced adipogenesis. We measured and compared blood biochemical values among SAMP6, SAMR1, and AKR/J (the founder for the SAM strains) mice to assess whether the SAMP6 strain has abnormalities in blood biochemical markers, such as triglycerides or cholesterol.  相似文献   

14.
加速衰老小鼠脑组织中的衰老相关基因的表达   总被引:4,自引:0,他引:4  
从分子水平上研究衰老对大脑的影响有助于揭示机体衰老的分子机理 ,也有助于揭示衰老相关性脑功能异常的发生过程。本研究应用DDRT PCR方法研究衰老相关基因在SAM (Senescence acceleratedmouse)小鼠脑组织中表达的变化情况。在SAMR1TA、SAMP8/Ta、SAMP1 0 /Ta三个品系中 ,通过比较不同鼠龄SAMP1 0 /Ta (2、 4、 1 2、 1 8月龄 )的基因表达情况 ,发现在 4月龄和 1 2月龄分别有一个差异表达片段 ;对不同鼠龄的SAMP8/Ta (2、 4、 1 1月龄 )经差显比较 ,发现在 2月龄和 1 1月龄各有一差异表达片段。在不同品系的比较中发现了 1 6个差异性片段 ,分别属于SAMP1 0 /Ta (3个 )、SAMP8/Ta (6个 )和SAMR1TA (7个 )。测序结果经检索显示 ,它们分别与下列基因转录产物同源 :热休克识别蛋白 70、ATP依赖性线粒体RNA螺旋酶、DleumRNA、小鼠X染色体RP2 3 334C4克隆DNA序列、还原型辅酶Q 细胞色素c还原酶复合物 7 2kD亚单位、 6 0S核糖体蛋白L2 1、FIS、苯基烷基胺钙离子拮抗物结合蛋白、岩藻糖基转移酶 9、胶质细胞源性神经营养因子家族受体α1、内切核酸酶 /逆转录酶、PER1蛋白相关超级融原核蛋白、中心体蛋白CG NAP、转铁蛋白重链基因、巢蛋白 2基因、DNA依赖性蛋白激酶催化亚单位基因 prkdc  相似文献   

15.
Cho YM  Bae SH  Choi BK  Cho SY  Song CW  Yoo JK  Paik YK 《Proteomics》2003,3(10):1883-1894
The senescence-accelerated mouse (SAM) is a useful animal model to study aging or age-associated disorders due to its inherited aging phenotype. To investigate proteins involved in the aging process in liver, we compared the young (4- or 20-week old) and the aged group (50-week-old) of SAMP8 (short life span) and SAMR1 (control) mice, and identified 85 differentially expressed distinct proteins comprising antioxidation, glucose/amino acid metabolism, signal transduction and cell cycle systems using proteomics tools. For the antioxidation system, the aged SAMP8 mice showed a large increase in glutathione peroxidase and decreases in glutathione-S-transferase and peroxiredoxin, ranging from 2.5- to 5-fold, suggesting lower detoxification potentials for oxidants in the aged SAMP8 liver. Similarly, levels of key glycolytic enzymes decreased greatly in the aged SAMP8 compared to SAMR1, indicating a disturbance in glucose homeostasis that may be closely related to the typical deficits in learning and memory of the aged SAMP8. Protein profiles of amino acid metabolic enzymes suggest that accumulation of glutamine and glutamate in tissues of the aged SAMP8 may be due to hyperexpression of ornithine aminotransferase and/or glutamate dehydrogenase. Decreases in levels of proteins involved in signal transduction/apoptosis (e.g., cathepsin B) in the aged SAMP8 may support the previously proposed negative relationship between apoptosis and aging. However, the changes described above were not markedly seen in the young group of both strains. For cell cycle systems, levels of selenium binding protein increased about four-fold with age in SAMP8. Yet, almost no change occurred in either the young or the aged SAMR1, which may explain problems associated with cell proliferation and tissue regeneration in the aged SAMP8. In conclusion, composite profiles of key proteins involved in age-related processes enable assessment of accelerated senescence and the appearance of senescence-related pathologies in the aged SAMP8.  相似文献   

16.
Age-related changes in systolic blood pressure were assessed, using the senescence-accelerated mouse (SAM) model for aging research with strains SAMR1, SAMP1, and SAMP8. Each of the strains manifested a characteristic change in blood pressure with age. The SAMR1 strain, with normal aging, did not have chronologic changes from 2 to 27 months of age. The SAMP1 strain, with accelerated senescence, had a significant increase in blood pressure with age, and some (8 of 39) mice manifested hypertensive vascular disease characterized by high blood pressure, cardiac hypertrophy, and arteriolar fibrinoid necrosis at 11 to 14 months of age. The gradual increase in blood pressure after 8 to 10 months was considered to be preceded by progressive renal changes, from glomerulonephritis to contraction of the kidney, suggesting that the high blood pressure in the SAMP1 strain was of renal origin. Blood pressure in the SAMP8 strain, with age-related deficits in learning and memory, gradually decreased after 5 to 7 months of age, and was suggested to be due to the astrogliotic changes in response to spongiform degeneration in the medulla oblongata at 11 to 14 and 15 to 18 months of age.  相似文献   

17.
Senescence-accelerated mice (SAM) strains are useful models to understand the mechanisms of age-dependent degeneration. In this study, measurements of the mitochondrial membrane potential (Δψm) of platelets and the Adenosine 5-triphosphate (ATP) content of hippocampi and platelets were made, and platelet mitochondria were observed in SAMP8 (faster aging mice) and SAMR1 (aging resistant control mice) at 2, 6 and 9 months of age. In addition, an Aβ-induced (Amyloid beta-protein) damage model of platelets was established. After the addition of Aβ, the Δψm of platelets of SAMP8 at 1and 6 months of age were measured. We found that platelet Δψm, and hippocampal and platelet ATP content of SAMP8 mice decreased at a relatively early age compared with SAMR1. The platelets of 6 month-old SAMP8 showed a tolerance to Aβ-induced damages. These results suggest that mitochondrial dysfunction might be one of the mechanisms leading to age-associated degeneration in SAMP mice at an early age and the platelets could serve as a biomarker for detection of mitochondrial function and age related disease.  相似文献   

18.
快速老化模型小鼠海马正反向抑制消减cDNA文库的构建   总被引:2,自引:0,他引:2  
目的:构建快速老化模型小鼠(SAM)海马正反向抑制消减cDNA文库,以揭示SAMP8学习记忆脑老化的机制,同时为研究阿尔茨海默病(AD)的发病机制提供线索。方法:以快速老化模型小鼠SAMP8和SAMR1海马的总RNA为材料,采用抑制消减杂交方法和蓝白斑筛选克隆构建文库,并用PCR鉴定了文库的质量。结果:成功构建了12月龄雄性SAMP8和SAMR1海马的正反向抑制消减cDNA文库,其中正向文库包含864个克隆,反向文库包含960个克隆,阳性克隆率为96.16%,插入片段范围为250~2000bp。结论:SAMP8和SAMR1海马的正反向抑制消减cDNA文库的构建,为进一步筛选鉴定SAMR1和SAMP8海马差异表达基因提供了丰富的实验材料。  相似文献   

19.
1. A better understanding of the molecular effect on aging in the brain may help reveal important aspects of organism aging, as well as the processes that lead to aging-related brain dysfunction. In this study, the aging-specific expression genes of the murine cerebrum were investigated by using the technique of DDRT-PCR in two senescence-accelerated mouse strains, SAMP10/Ta and SAMR1TA.2. Through comparing gene expression profile among the age, 2, 4, 12, and 18 month of the SAMP10/Ta strain, four differential fragments have been found, and comparing gene expression profile between the two mouse strains, 24 fragments have been detected, 7 and 17 of them belong to SAMP10/Ta and SAMR1TA, respectively.3. Sequencing analysis indicated that most of those fragments are homologous with some of certain gene cDNA that are related with senile. The data obtained from this study suggest that many genes are involved in the senile process and accelerate senescence phenotypic pathologies in SAMP10/Ta.  相似文献   

20.
Senescence-accelerated mouse (SAM) strains constitute a model of accelerated senescence coupled with a short lifespan and the early development of various age-related disorders. To identify differential gene expression in testes between senescence-accelerated SAMP1 and control SAMR1 mice, we performed suppression subtractive hybridization. We observed that the expression of three genes related to cell proliferation (myosin regulatory light chain B, aldolase 1A isoform, and cytochrome c oxidase subunit VIc) were upregulated and four genes implicated in spermatogenesis were downregulated in SAMP1 mice. Asb-8, a member of ankyrin repeat-containing proteins, was abundantly expressed in the testes and downregulated in SAMP1. The other three downregulated genes (germ cell-specific gene 1, T-complex polypeptide 1b, and activator of cAMP responsive element modulator in testis) have been reported to regulate late-stage spermatogenesis. These gene expression profiles might explain the findings of early testicular maturation and rapid decline in the ability to produce spermatozoa with advancing age in SAMP1 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号