首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

2.
Artificial activation of oocytes is a pre-requisite for successful cloning by nuclear transfer (NT). This study investigated effect of different combination of activation chemicals such as electric pulse (E), thimerosal (Thi) + dithiothreitol (DTT), 6-dimethylaminopurine (6-DMAP), or cycloheximide (CH) on the developmental ability and the frequency of apoptosis of porcine NT embryos during the culture in vitro. NT embryos activated with chemicals showed significantly higher developmental rate to blastocyst stage compared to embryos activated with E alone (21.5%-26.6% vs. 15.7%, respectively). Of chemicals, Thi + DTT supported higher development to blastocyst stage as compared to 6-DMAP or CH (26.6% vs. 21.5%-23.4%, respectively). Apoptosis of NT embryos were analyzed by using a terminal deoxynucleatidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The onset of apoptosis of embryos activated E alone was on Day 4, whereas embryos activated with chemicals showed apoptosis on Day 3 post-activation NT embryos exposed to chemicals for activation had higher frequency of apoptosis compared to that of embryos exposed to E alone from Day 3 to Day 7 during the culture. In conclusion, this study shows that chemical activation after fusion could increase not only the developmental ability of porcine NT embryos but also the mean cell number with an increased ratio of inner cell mass (ICM) to trophectoderm (TE) cells. However, the chemical activation also could increase the frequency of apoptosis and induced apoptosis earlier in porcine NT embryos.  相似文献   

3.
The effect of the protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), on the maturation promoting factor (MPF) activity, pronuclear formation, and parthenogenetic development of electrically activated in vitro matured (IVM) porcine oocytes was investigated. Oocytes were activated by exposure to two DC pulses, each of 1.5 kV/cm field strength and 60 microsec duration, applied 1 sec apart. In the first experiment, subsequent incubation with 2 or 5 mM 6-DMAP for 3 hr increased the incidence of blastocyst formation compared with no treatment, whereas incubation with 2 or 5 mM 6-DMAP for 5 hr did not. In the proceeding experiments, oocytes exposed to 6-DMAP were incubated with 2 mM of the reagent for 3 hr. Assaying histone H1 kinase activity in the second experiment revealed that the levels of active MPF in electrically activated oocytes treated with 6-DMAP were depleted more rapidly and remained depleted for longer compared with electrical activation alone. The kinetics of MPF activity following 6-DMAP treatment were similar to that found in inseminated oocytes in the third experiment. The effect of 6-DMAP was correlated with an increased incidence of parthenogenetic blastocyst formation. A fourth experiment was undertaken to examine the diploidizing effect of 6-DMAP. Electrically activated oocytes treated with 6-DMAP and cytochalasin B, either alone or in combination, displayed a higher incidence of second polar body retention compared with those that were untreated or treated with cycloheximide alone. After 6 days of culture in vitro, parthenotes exposed to 6-DMAP, either alone or in combination with cytochalasin B, formed blastocysts at a greater rate compared with those exposed to cytochalasin B alone, cycloheximide alone or no treatment. The combined 6-DMAP and cytochalasin B treatment induced the highest rate of blastocyst formation (47%), but the numbers of trophectoderm and total cells in these blastocysts were lower compared with those obtained following exposure to 6-DMAP alone. These results suggest that the increased developmental potential of 6-DMAP-treated parthenotes may be attributable to the MPF-inactivating effect of 6-DMAP, rather than the diploidizing effect of 6-DMAP.  相似文献   

4.
影响猪体细胞核移植重构胚体外发育的若干因素   总被引:8,自引:0,他引:8  
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚达11.7%、孵化囊胚率为6.7%,显著高于成纤维细胞组成的重构胚(P<0.05)。我们研究了卵母细胞的采集方法,激活方法和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至G0或G1期,抽吸法/解剖法采集卵母细胞,体外培养33或44h,将卵丘细胞置于去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电泳冲结合6-DMAP激活处理,体外培养6天,结果表明,卵 母细胞采集方法、激活液中细胞松弛素(CB)并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33h的卵母细胞为受体)(P<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,能在体外发育至囊胚。  相似文献   

5.
影响猪体细胞核移植重构胚体外发育的若干因素   总被引:1,自引:0,他引:1  
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚达11.7%、孵化囊胚率为6.7%,显著高于成纤维细胞组成的重构胚(p<0.05)。我们研究了卵母细胞的采集方法,激活方法和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至GO或G1期,抽吸法/解剖法采集卵母细胞,体外培养33或44 h,将卵丘细胞置于去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电脉冲结合6-DMAP激活处理,体外培养6天,结果表明,卵母细胞采集方法、激活液中细胞松弛素(CB)并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33 h的卵母细胞为受体)(p<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,能在体外发育至囊胚  相似文献   

6.
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.  相似文献   

7.
The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 microM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 micros) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5-81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2-32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.  相似文献   

8.
The effects of chemical activation on birth efficiency of cloned pigs were studied by investigating the developmental process from porcine oocyte activation to birth of cloned pigs. Three different activation methods were used: (i) Electroporation (Ele); (ii) Ele followed by incubation with 6-dimethylaminopurine (6-DMAP); and (iii) Ele followed by a treatment with cycloheximide (CHX). In experiment 1, the rates of cleavage, developmental rates and cell number of porcine parthenogenetic (PA) embryos were investigated in the three treatment groups. In experiment 2, NT embryos produced by the three different activation treatments were compared for the rates of cleavage, development and cell number. Finally, the effects of Ele and Ele+CHX activation methods on birth efficiency of cloned pigs were compared. The activated oocytes treated by combination activation generally showed a higher (P<0.05) blastocyst rate and produced more expanded blastocysts than oocytes activated with Ele. The rates of cleavage and total cell number of parthenotes were not significantly different. Parthenogenetic embryos activated with 6-DMAP developed into blastocyst and expanded blastocyst stages at a significantly (P<0.05) higher rate than those treated with Ele, but the developmental capability was dramatically decreased in NT embryos. With the CHX activation method, the NT embryo blastocyst rate was substantially (P<0.05) increased although the production of expanded blastocysts was not significantly different from that by the other two methods. The birth rate of cloned pigs increased in the CHX group, though the rate was not significantly different from Ele. The effects of season on developmental rate of the porcine PA embryos and birth rate of cloned pigs were also examined in our study. Porcine oocytes collected in the spring had higher developmental capabilities than those collected in the winter. However, no difference in birth rate of the cloned pigs was found between the oocytes collected in the two seasons. The results obtained from PA and NT embryos, following different activation methods, were inconsistent, suggesting that activation mechanisms are dissimilar in PA and NT embryos. Although the chemical activation in our study leads to an elevation of the blastocyst rate, it does not improve the oocyte’s molecular programming and so does not significantly improve the efficiency of producing cloned pig births. Supported by National Key Basic Research and Development Program (China of Grant No. G200000161).  相似文献   

9.
Studies were undertaken to determine whether electrical stimulation, or ethanol treatment alone or in combination with 6-dimethylaminopurine (6-DMAP) influenced the rate of parthenogenetic activation of rat oocytes. The percentages of activated oocytes with pronuclei (89-91%) and those developed to the two-cell stage (68-72%) were significantly higher after electrical stimulation with direct current (DC) at 100 V/mm, 99 microsec once or twice, than when other DC voltages (75, 150, and 200) were applied or when ethanol or 6-DMAP treatment was given alone. However, none of the activated oocytes developed beyond the four-cell stage. The percentages of activated oocytes with pronuclei (100%) that developed to the two-cell (100%), eight-cell (89%) and blastocyst stages (50%) were significantly higher when electrical stimulation was followed by treatment with 2 mM 6-DMAP for 4 hr than when other combined procedures were applied. In conclusion, the results of the present study clearly showed that combined treatment of electrical stimulation or ethanol with 6-DMAP induces parthenogenetic activation and subsequent development of rat oocytes in vitro.  相似文献   

10.
Parthenogenetic development (PA) is often used as a model to investigate activation protocols for nuclear transfer (NT) embryos. The objective of this study was to compare the development, as well as the dynamics of the nuclear materials and microtubules of PA and NT embryos following similar activation treatment. Our results demonstrate that, during parthenogenesis, activation through either electrical pulses or chemical stimulation alone resulted in low cleavage rates and compromised development. A combination of two sets of electrical pulses and a 2-h-exposure to chemical activation medium (5 microg/ml cycloheximide (CHX) and 2 mM 6-dimethylaminopurine (6-DMAP) in KSOM+0.1% BSA) could effectively activate rabbit oocytes, and resulted in a 99% (n = 73) cleavage rate with greater than 60% (n = 73) developing to blastocysts at day 4. However, the same activation protocol following NT resulted in only 65-72% of oocytes cleaved (depending on donor cell type), with less than 20% developing to the blastocyst stage. The differences observed between NT and PA embryos subjected to the same activation protocol were also evident in terms of the time required for their development to the blastocyst stage, as well as the cell numbers present in blastocysts at day 6. Furthermore, laser confocal microscopy revealed that pronuclear formation in the NT embryos was delayed by comparison to that in the parthenotes. In conclusion, our study suggests that an effective protocol for parthenogenesis cannot promise a comparable outcome for NT embryos.  相似文献   

11.
This study was designed to determine what effect electropulse parameters would have on rate of fusion, lysis, and embryo viability when embryos were subjected to electrofusion treatment in nonelectrolyte or electrolyte pulse media. Previous experiments have shown electrolyte medium (i.e., phosphate-buffered saline; PBS) to have a positive effect on electric pulse-induced murine oocyte activation. In addition, these results also indicated that pulse media containing 0.9 mM Ca2+ induced a dramatic increase in the rate of murine oocyte activation compared with oocytes pulsed in media containing 0.0 or 0.05 mM Ca2+. Pronuclear or two-cell-stage embryos were obtained from superovulated prepubertal randomly bred Swiss (albino) female mice. Embryos were randomly assigned to three nonelectrolyte and three electrolyte treatment media. Nonelectrolyte media consisted of 0.3 M mannitol (T1), 0.3 M mannitol + 0.05 mM CaCl2 (T2), and 0.3 M mannitol + 0.9 mM CaCl2 (T3). Electrolyte media consisted of Ca(2+)-free PBS (T4), PBS containing 0.05 mM CaCl2 (T5), and PBS containing 0.9 mM CaCl2 (T6). Three experiments were carried out; the objective of the first was to determine the rate of fusion and rate of lysis in murine two-cell embryos placed in the two types of (0.3 M mannitol, T1-T3; and PBS, T4-T6) fusion media and subjected to a fusion procedure (3 V, 5 sec AC alignment pulse, followed by a 1.56 kV.cm-1, 99 microsec DC fusion pulse). Control two-cell embryos were placed in T1 for 2 min and did not receive a fusion pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Previous studies mainly evaluated the effect of culture conditions on preimplantation embryo apoptosis. In order to inhibit apoptosis of nuclear transfer (NT) embryos, putative apoptosis inhibitors were used to treat donor cells. However, little is known about the effect of activation treatments on embryo apoptosis. We firstly investigated the effect of various parthenogenetic activation (PA) treatments on embryo development, blastocyst cell number, and apoptosis, and then one of these activation treatments proved to be most efficient was selected for activation rabbit NT embryos. The activation by electrical pulses and 30 min later, electroporation with 25 muM D-myoinositol 1,4,5-trisphosphate (IP3) in Ca(2+)- and Mg(2+)-free PBS, then exposure to 2.0 mM 6-dimethylaminopurine (6-DMAP) for 3 hr effectively activated rabbit oocytes, and resulted in significantly a higher blastocyst development rate (72.7%) and total cell number (175 +/- 14.1), and markedly lower apoptosis level of blastocyst (4.3 +/- 0.5) than all the other groups. When the same activation protocol was applied in NT embryo activation, we found that exposure of the embryos to 6-DMAP for 3 hr could decrease the apoptosis level of blastocyst and increase blastocyst rate and cell number. The results demonstrate that oocyte activation affects not only embryo development and quality but also embryo apoptosis.  相似文献   

13.
Fragmentation occurs during early developmental stages of electrically activated oocytes and nuclear transfer (NT) embryos. It might contribute to the low developmental rate of porcine NT embryos. The present study was conducted to investigate whether the addition of sugars such as sorbitol or sucrose suppresses fragmentation and supports the development of electrically activated oocytes and NT embryos. The activated oocytes were cultured in Porcine Zygote Medium-3 (PZM-3) supplemented with sorbitol or sucrose for 2 days after electric activation, and then cultured in the PZM-3 for the remaining 4 days. The osmolarities of PZM-3, PZM-3 supplemented with 0.05 or 0.1 M sorbitol, and PZM-3 with 0.05 M sucrose were 269 +/- 6.31, 316 +/- 3.13, 362 +/- 4.37, and 315 +/- 5.03 mOsm, respectively. When parthenogentically activated oocytes were cultured in PZM-3 supplemented with 0.05 M sorbitol or sucrose for the first 2 days and then cultured in PZM-3 without sugar, a significantly higher (P < 0.05) cleavage rate and blastocyst rate were observed. Interestingly, addition of sugar to PZM-3 for 2 days reduced the fragmentation rate compared to PZM-3 without sugar. In NT embryos, sugar addition into PZM-3 increased the fusion rate (84.2% +/- 6.07 vs. 95.1% +/- 2.52), cleavage rate (67.6% +/- 5.80 vs. 77.3% +/- 3.03), and developmental rate to the blastocyst stage (10.2% +/- 0.79 vs. 19.4% +/- 1.77). There was no significant difference between treatments for the number of the blastocysts. In addition the fragmentation rate was reduced compared to PZM-3 without sorbitol (26.1 +/- 4.30 vs. 14.5 +/- 1.74). In conclusion, increasing the osmolarity of PZM-3 through addition of either sorbitol or sucrose for 48 hr increased the cleavage and developmental rate to the blastocyst stage by reducing the fragmentation rate through increasing osmolarity.  相似文献   

14.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

15.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

16.
The present study was undertaken to investigate the preimplantation developmental competence of cloned pig embryos that were derived from fibroblast cell nuclei by different methods for the activation of reconstructed oocytes. In subgroups IA and IB, nuclear-transferred (NT) oocytes derived from either adult cutaneous or fetal fibroblast cells that had been classified as nonapoptotic by intra vitam analysis for programmed cell death using the YO-PRO-1 DNA fluorochrome underwent sequential physical (i.e., electrical) and chemical activation (SE-CA). This novel method of SE-CA, which was developed and optimized in our laboratory, involves treatment of reconstituted oocytes with direct current pulses and subsequent exposure to 7.5 μM calcium ionomycin, followed by incubation with 30 μM R-roscovitine (R-RSCV), 0.7 mM 6-dimethylaminopurine and 3.5 μg/mL cycloheximide. In subgroups IIA and IIB, NT oocytes were subjected to the standard method of simultaneous fusion and activation mediated by direct current pulses. The proportion of cloned embryos in subgroup IA that reached the morula and blastocyst stages was 145/248 (58.5%) and 78/248 (31.5%), respectively. The proportions of cloned embryos in subgroup IB that reached the morula and blastocyst stages were 186/264 (70.5%) and 112/264 (42.4%), respectively. In turn, subgroup IIA yielded proportions at the morula and blastocyst stages of 110/234 (47.0%) and 49/234 (20.9%), respectively. Subgroup IIB yielded proportions at the morula and blastocyst stages of 144/243 (59.3%) and 74/243 (30.5%), respectively. In summary, the SE-CA of NT oocytes reconstructed from either type of nonapoptotic/nonnecrotic (i.e., YO-PRO-1-negative) fibroblast cell resulted in porcine cloned embryos with considerably better in vitro developmental outcomes than those of cloned embryos generated using the simultaneous fusion and activation approach. To our knowledge, this is the first report of the successful stimulation of porcine NT oocytes using electric pulses followed by an additional activation with a higher dose (1.5 times) of calcium ionomycin and subsequent exposure to a combination of 30 μM R-RSCV and lower concentrations (by 3 times) of 6-dimethylaminopurine and cycloheximide. Moreover, we report here the first use of R-RSCV, a novel meiosis-promoting factor-related p34cdc2 kinase inhibitor, in the oocyte activation protocol for the somatic cell cloning of pigs.  相似文献   

17.
This study was carried out to investigate the various concentrations and exposure times of ethanol, one of many intracellular calcium elevating agents, and a sequential combination of ethanol (8%), cycloheximide (CHX, 10 microg/ml), cytochalasin B (CCB, 7.5 microg/ml) and 6-dimethylaminopurine (6-DMAP, 2 mM) to improve parthenogenetic activation and development of in vitro matured porcine oocytes. Cumulus-oocyte complexes (COCs) were matured in tissue culture medium (TCM) 199 for 44 h at 38.5 degrees C, 5% CO2 in air. Cumulus-free oocytes showing first polar body were activated by concentrations of 0, 5, 6, 7, 8, 9 and 10% ethanol for 10 min and exposure times of 0, 5, 8, 10, 12 and 15 min with 8% ethanol in HEPES buffered (25 mM) NCSU-23 medium. Also, oocytes were activated with the NCSU-23 medium containing 8% ethanol for 10 min. After that, oocytes were incubated in the NCSU-23 medium supplemented with CHX, CCB, 6-DMAP, CHX + CCB, CHX + 6-DMAP, CCB + 6-DMAP and CHX + CCB + 6-DMAP for 3h, respectively. Following activation, oocytes were transferred into the NCSU-23 medium containing 0.4% BSA for further culture of 20 and 144 h at 38.5 degrees C, 5% CO2 in air. The activation rates of oocytes were higher in 6, 7 and 8% ethanol concentrations compared with 0, 5, 9 and 10% ethanol concentrations. Significantly, more oocytes (29.3-33.7%) were activated in the exposure for 8, 10, 12 and 15 min than those in the exposure for 0 and 5 min, but there was no difference due to exposure to 8% ethanol for 8-15 min. Oocytes treated by chemical agents (40.5-70.5%) after exposure to ethanol significantly improved the rate of oocyte activation compared with ethanol alone (31.2%). The percentage of cleaved oocytes was higher in the ethanol+CHX+CCB+6-DMAP treatment (66.4%) than in other treatments (24.9-57.6%). Also, the rate of blastocyst formation was higher in the ethanol+CHX+CCB+6-DMAP treatment (25.0%) than in other treatments (0.0-19.3%). In conclusion, the optimal activation treatment of ethanol exposure alone for the in vitro matured porcine oocytes was 8% ethanol for 8-15 min. Oocytes activated by 8% ethanol for 10 min and incubated in the NCSU-23 medium supplemented with CHX, CCB and 6-DMAP for 3 h were more efficient for parthenogenetic development of in vitro matured porcine oocytes.  相似文献   

18.
Parthenogenetic activation is a possible way to produce homogeneous embryos with the same ploidy. These embryos could develop to the blastocyst stage during the cultivation. Probably such embryos could be used in other areas of biotechnology. The objectives of the present study were first to assess the ability of strontium-chloride to induce activation and parthenogenetic development in porcine oocytes in comparison with cycloheximide and 6-dimethylaminopurine; second to verify whether the combination of the two treatments improved activation and parthenogenetic development rates. At first, the effects of cycloheximide, 6-dimethylaminopurine and strontium-chloride on oocyte activation and embryonic development were compared. Oocytes from slaughterhouse ovaries were matured for 42h in tissue culture medium (TCM) 199 at 38.5 degrees C, 5% CO(2) in air. Matured oocytes were activated with 10mM strontium-chloride (S), 0.04mM cycloheximide (CX), 2mM 6-dimethylaminopurine (D) for 5h. The activation rate was judged by pronuclear formation of oocytes. Following the activation, oocytes were incubated in NCSU 37 medium for 6 days and in all groups more than 45% of oocytes activated. The activation rate for CX treatment was significantly higher (P<0.05) than for D (57.37+/-4.21% and 48.09+/-3.43%, respectively). In a second experiment in vitro matured porcine oocytes were activated using a combined treatment of strontium-chloride with cycloheximide (SCX) and strontium-chloride combined with 6-dimethylaminopurine (SD). In S and SCX groups more than 50% of oocytes were activated (53.29+/-5.39% and 54.3+/-7.29%, respectively). However a large portion of embryos stopped their development at the two- or four-cell stage. Significantly higher numbers of embryos could reach the eight-cell stage in SD and SCX than for S (7.8+/-1.0%, 7.2+/-4.0% and 3.9+/-3.1%, respectively). Blastocyst formation was only observed in S, CX and SCX. These results show that porcine in vitro matured oocytes can be artificially activated by cycloheximide, 6-dimethylaminopurine and strontium-chloride.  相似文献   

19.
We examined the effects of the source of recipient oocytes and timing of fusion and activation on the development competence of bovine nuclear transferred (NT) embryos derived from fresh cumulus cells isolated immediately after collection by ovum pickup (OPU). As recipient cytoplasts, we used in vivo-matured oocytes collected from hormone-treated heifers by OPU, or in vitro-matured oocytes from slaughterhouse-derived ovaries. NT embryos were chemically activated immediately (simultaneous fusion and activation, FA) or 2 h (delayed activation, DA) after fusion. When in vitro-matured oocytes were used as recipient cytoplasts, the development rate to the blastocyst stage of NT embryos produced by the DA method (23%) tended to be higher than those by the FA method (15%), but the difference was not significant. NT embryos derived from in vivo-matured cytoplasts have a high blastocyst yield (46%). Pregnancy rate at day 35 did not differ with the timing of fusion and activation (FA vs. DA; 50% vs. 44%) or oocyte source (in vivo- vs. in vitro-matured; 50% vs. 44%). Subsequently, the high fetal losses (88% of pregnancies) were observed with in vitro-matured cytoplasts, whereas no abortions were observed in NT fetuses from in vivo-matured cytoplasts. A total of three embryos derived from fresh cumulus cells developed to term. However, all three cloned calves were stillborn. These results indicate that improvement of development competence after NT is possible by using in vivo-matured oocytes as recipient cytoplasts in bovine NT.  相似文献   

20.
The present study was conducted to determine the effect of electric field strength on the rate of membrane fusion between the somatic cell and cytoplast and on subsequent in vitro development of reconstructed embryos. Additionally, the in vitro developmental competence of cat oocytes artificially activated after 44 h of maturation culture was examined. An efficient fusion rate (64.2%) was obtained by applying a single pulse of 1.5 kV/cm for 50 micros, and the fusion rate remained almost constant at the higher field intensity (59.8 and 54.9% at 1.7 and 2.0 kV/cm, respectively). Although the cleavage rate of fused embryos increased with an increase of the electric field strength, there were no differences among the groups with respect to the proportion of development to the morula and blastocyst stages. In the additional experiment, oocytes at the metaphase II stage after culture for 44 h were activated by the combination of calcium ionophore (CaI) with cycloheximide (CHX). Some (11.8%) of activated oocytes developed to the blastocyst stage. Results from this study indicated that electric field strength affects the rates of fusion and cleavage but has no significant effects on the development to the blastocyst stage of reconstructed embryos. Prolonged maturation culture of cat oocytes (up to 44 h) decreased their ability to develop to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号