首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 275 毫秒
1.
组胺H1受体拮抗剂被用于治疗某些过敏性疾病,如鼻炎、荨麻疹和过敏性皮炎。本文采用无标记细胞整合药理学技术建立了组胺H1受体拮抗剂高通量筛选模型。应用基于共振波导光栅的动态质量重置分析方法检测了已知的激动剂和拮抗剂作用于A431细胞上内源性H1受体后所产生的特征信号,获取特征信号谱,建立组胺H1受体拮抗剂筛选模型。进而应用此模型筛选了32个天然产物对组胺H1受体的拮抗活性。结果表明,无标记DMR分析适合于H1受体拮抗剂的高通量筛选;在筛选的32个化合物中,从亚贡中分离得到的内酯类化合物为活性较强的拮抗剂。上述结果表明,无标记DMR分析可能成为组胺H1受体拮抗剂发现的新方法。  相似文献   

2.
多巴胺D1和D2受体拮抗剂对针刺镇痛的增强   总被引:7,自引:2,他引:5  
在兔K~+透入测痛模型上,应用高选择性的D_1或D_2受体拮抗剂、观察其对针刺镇痛的影响。结果表明,iv.D_2受体拮抗剂氟哌啶醇和氯氮平加强针刺镇痛,且与剂量有关。icv.D_2受体拮抗剂domperidone和舒必利及D_1受体拮抗剂SCH23390,亦能加强针刺镇痛。本文对D_1和D_2受体拮抗剂在针刺镇痛中的作用进行了讨论。  相似文献   

3.
NK4蛋白在大肠杆菌中的表达及其活性研究   总被引:1,自引:0,他引:1  
NK4蛋白是近年来发现的肝细胞生长因子的最佳拮抗剂。为规模化生产NK4蛋白,将NK4基因插入载体pET-26b(+),构建重组原核表达载体pET-26b(+)-NK4,并转化大肠杆菌Rosseta(DE3)。转化菌经IPTG诱导后以包涵体形式大量表达重组蛋白,占菌体总蛋白的42%。包涵体用盐酸胍溶解后经Ni NTA树脂亲和层析纯化,蛋白纯度约为95%,经Western blot证实为NK4蛋白。纯化的重组蛋白行稀释复性后可抑制Hela细胞的贴壁、迁徙,并诱导其凋亡,证实制备的NK4蛋白具有生物活性。NK4蛋白的成功制备将有助于NK4相关功能的深入研究。  相似文献   

4.
阐明躯体性应激和心理性应激降低NK细胞杀伤活性的机制及异同。应用Communication box系统分别使小鼠连续负荷躯体性应激和心理性应激后,以~(51)Cr释放法检测鼠脾NK、LAK细胞的杀伤活性;以流式细胞术检测鼠脾细胞、LAK细胞中NK细胞受体的表达水平。结果表明,躯体性应激和心理性应激均可降低鼠脾NK、LAK细胞的杀伤活性,但对脾细胞、LAK细胞中NK细胞受体表达的影响却不同,提示躯体性应激和心理性应激影响NK细胞功能的机制不同。  相似文献   

5.
自然杀伤(NK)细胞是固有免疫系统的重要组成,其作为抵抗病原体和癌变细胞的第一道机体防线,通过释放穿孔素、颗粒酶等介导的细胞毒作用杀伤靶细胞.随着糖组学的飞速发展,大量研究报道糖基化异常往往与细胞的病变相关,这为免疫学研究及疾病的治疗策略提供了全新的研究角度.NK细胞作为固有免疫系统的主要效应细胞之一,其活性及功能受细胞表面糖基化修饰及相关糖结合蛋白(例如siglec、selectin及galectin)的影响较大,siglec通过与肿瘤细胞表面上调的唾液酸化糖链结合以抑制NK细胞活化,selectin与其配体相互作用促进NK细胞的免疫功能,galectin结合β-半乳糖苷介导NK细胞免疫进程.因此,本文从糖组学的角度概述与NK细胞免疫功能相关的糖结合蛋白及与其相互作用糖链的最新研究进展,并且讨论了病变过程中糖结合蛋白异常对肿瘤进程的影响,以及其在疾病治疗策略方面的应用前景.  相似文献   

6.
目的 通过在人卵巢癌细胞SKOV-3中转染NK4基因表达片段,研究NK4对人卵巢癌的治疗作用,从而验证NK4可作为卵巢癌潜在的基因治疗新策略.方法 用NK4和荧光霉素表达质粒分别稳定转染人卵巢癌细胞SKOV-3.用West-ern blot检测细胞培养基中NK4蛋白表达,以及经不同培养基(SKOV-3、SKOV-3/LUC和SKOV-3/NK4培养上清)培养后SKOV-3细胞中c-Met和磷酸化-c-Met的表达.用MTT试剂盒绘制细胞生长曲线.用细胞划痕试验检测NK4对细胞转移的作用.结果 在SKOV-3/NK4培养基中有NK4蛋白表达,对照(SKOV-3,SKOV-3/LUC)细胞中无表达.磷酸化-c-Met在SKOV-3/NK4培养基培养的SKOV-3细胞中被抑制,而在对照(SKOV-3,SKOV-3/LUC)细胞培养基培养的SKOV-3细胞中正常表达.c-Met表达在各组差异无统计学意义.三种细胞体外生长曲线差异无统计学意义(P>0.05).细胞划痕试验表明SKOV-3/NK4划痕区域的细胞个数明显少于SKOV-3和SKOV-3/LUC细胞.结论 NK4蛋白在SKOV-3/NK4细胞培养基中大量分泌,NK4能抑制人卵巢癌细胞c-Met受体磷酸化,并能抑制卵巢癌细胞体外活动能力,为应用NK4作为卵巢癌基因治疗方法提供了研究基础.  相似文献   

7.
肾素-血管紧张素-醛固酮系统起初被认为是较简单的神经体液调节机制之一。但是,这一想法随着RAAS阻滞剂:肾素阻滞剂、血管紧张素转换酶抑制剂(ACEI)、AT1受体拮抗剂及盐皮质激素受体拮抗剂的深入研究而受到挑战。因此,RAAS的组成、以上药物发挥作用的具体通路及副作用均得到重新定义。在RAAS阻滞剂的应用过程中,机体肾素水平升高,并刺激肾素原受体(即无活性的肾素前体,PRR),进而对机体造成不良影响。同理,在AT1受体拮抗剂的应用过程中,血浆血管紧张素II的水平升高,并与2型血管紧张素II(AT2)受体结合,进而对机体产生有利作用。此外,随着ACEI及ARB的应用,血管紧张素1-7水平升高,其与Mas受体结合,发挥心脏及肾脏保护的作用,还可通过刺激干细胞发挥组织修复作用。  相似文献   

8.
提取猫的背根神经节 (DRG)中的Poly(A) +RNA ,注射到非洲爪蟾卵母细胞中进行表达 ,2d后通过双电极电压箝技术检测爪蟾卵母细胞对速激肽受体激动剂的反应 .NK- 1受体特异激动剂 [Sar9,Met(O2 ) 11]SP (Sar -SP) ,NK -2受体特异激动剂 [β- Ala8] neurokininA ( 4~ 1 0 ) (Ala -NKA)和神经激肽A(NKA)产生相似的内向电流 .由一个快速的锋电流和持续数分钟的振荡电流组成 .Sar- SP的反应只被NK- 1受体特异拮抗剂L- 6 6 8,1 6 9( 1 μmol/L)阻断 ,而NKA及Ala- NKA的反应则仅被NK -2受体特异拮抗剂L -6 5 8,877( 1 μmol/L)阻断 .注射猫脊髓背角Poly(A) +RNA在爪蟾卵母细胞中表达的速激肽受体的反应基本相似 .这些速激肽受体的反应都具有强烈的脱敏性 .这是首次在爪蟾卵母细胞受体表达系统证明DRG神经元有速激肽NK- 1和NK -2受体 ,从而提示在伤害性初级传入末梢上可能存在速激肽突触前自身受体  相似文献   

9.
乙酰胆碱对自然杀伤细胞活性的影响   总被引:4,自引:0,他引:4  
目的:观察乙酰胆碱(ACh)对自然杀伤(NK)细胞活性的影响,并初步探讨其作用的受体机制.方法:根据不同的实验目的,选择ACh、胆碱能受体激动剂和拮抗剂分别作用于NK细胞,以乳酸脱氢酶(lactate dehydrogenase,LDH)自然释放法检测不同实验条件下NK细胞杀伤肿瘤靶细胞(Yac)的活性.结果:ACh、M受体激动剂毛果芸香碱和N受体激动剂烟碱在10-10~10-6mol/L浓度范围内都能显著抑制NK细胞杀伤肿瘤细胞的活性.M受体拮抗剂阿托品(10-8和10-7mol/L)能完全阻断同浓度ACh抑制NK细胞活性的作用;但N受体拮抗剂筒箭毒碱(10-8和10-7mol/L)不能阻断同浓度ACh抑制NK细胞活性的作用.结论:ACh可抑制NK细胞对肿瘤细胞的杀伤作用,此作用主要由淋巴细胞上的M受体和N1受体介导.  相似文献   

10.
目的:探讨黄芪含药血清对自然杀伤(NK)细胞活性及杀伤细胞凝集素样受体K1(KLRK1)表达的影响。方法:SD大鼠灌胃不同剂量的黄芪水煎剂制备黄芪含药血清。NK92MI细胞与不同剂量黄芪含药血清及对照血清孵育12h后,采用乳酸脱氢酶释放测定法检测NK细胞对靶细胞YAC-1的杀伤活性,采用qPCR和western blot检测KLRK1 mRNA和蛋白表达。结果:不同浓度黄芪含药血清刺激12h后NK细胞杀伤活性明显增强,KLRK1表达显著升高。结论:黄芪含药血清能活化NK细胞,其机制可能与其激活KLRK1有关。  相似文献   

11.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

12.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

13.
Abstract: To define the effects of antisense oligonucleotides on spinal neurokinin 1 (NK1) receptor function in nociceptive processing, several antisense oligonucleotides directed against the NK1 receptor mRNA were intrathecally injected into rats via an implanted catheter, and their effect on the behavioural response to formalin injected into the paw was assessed. We observed that there was no significant reduction of pain behaviour or immunostaining of spinal NK1 receptors after repeated daily intrathecal treatment with an antisense oligonucleotide. However, spinal application of substance P (SP) in the antisense oligonucleotide-treated animals resulted in a profound and long-lasting reduction in the behavioural response to formalin injection, and a parallel reduction in the NK1 receptor immunoreactivity normally observed in spinal dorsal horn. Intrathecal SP in the control groups, i.e., rats treated with an oligonucleotide containing four mismatched bases, the corresponding sense oligonucleotide, a mixture of the sense and the antisense oligonucleotides, in each case had no effect. The effects of SP were blocked by NK1 receptor antagonists and were not mimicked by NMDA. The mechanism underlying these effects is not clear. It may be due to partial degradation of the internalised receptors, which cannot be replaced by newly synthesised receptors because of the action of the NK1 antisense oligonucleotide.  相似文献   

14.
Herpes simplex virus-1 (HSV-1) is an important human pathogen which in a minority of people causes severe infections. In immunocompetent hosts the infection is self limiting. However, a small minority of people have frequent attacks. As NK cells have been implicated in host protection against HSV-1, the aim of this study was to compare NK cell receptor expression in healthy controls and in patients suffering from recurrent HSV-1 reactivations using monoclonal antibodies against NK cell receptors and 3 colour flow cytometry. Eighteen patients were recruited into the study and the results were compared to a control group. The results obtained showed that overall there was no statistical difference between patient and control groups in the expression of the NK cell receptors. There were however, individuals in the patient group (in particular, two members of one family) with significantly reduced level of activating receptors compared to the control group.  相似文献   

15.
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT 1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 days with the selective NK1 receptor antagonist GR 205171 (10 mg/kg daily) through subcutaneously implanted osmotic mini pumps, and DRN 5-HT 1A autoreceptor functioning was assessed using various approaches. Recording of DRN serotonergic neurons in brainstem slices showed that GR 205171 treatment reduced (by approximately 1.5 fold) the potency of the 5-HT 1A receptor agonist, ipsapirone, to inhibit cell firing. In parallel, the 5-HT 1A autoreceptor-mediated [35S]GTP-gamma-S binding induced by 5-carboxamidotryptamine onto the DRN in brainstem sections was significantly decreased in GR 205171-treated mice. In vivo microdialysis showed that the cortical 5-HT overflow caused by acute injection of the SSRI paroxetine (1 mg/kg) was twice as high in GR 205171-treated as in vehicle-treated controls. In the DRN, basal 5-HT outflow was significantly enhanced by GR 205171 treatment. These data supported the hypothesis that chronic NK1 receptor blockade induces a functional desensitization of 5-HT 1A autoreceptors similar to that observed with SSRIs.  相似文献   

16.
We have investigated and further characterized, in the rabbit retina, the synaptic connectivity of the ON-type cone bipolar cells that are immunoreactive for an antibody against the neurokinin-1 receptor (NK1R). NK1R-immunoreactive bipolar cell axons terminate in stratum 4 of the inner plexiform layer. The axons of NK1R-positive bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and from putative AII amacrine cells via gap junctions. The major outputs from NK1R-positive bipolar cells make contacts with amacrine cell processes. The most frequent postsynaptic dyads comprise two amacrine cell processes. Double-labeling experiments with antibodies against NK1R and either calretinin or glycine have demonstrated that NK1R-immunoreactive bipolar cells form gap junctions with AII amacrine cells. Thus, NK1R-positive cone bipolar cells, together with calbindin-positive cone bipolar cells, may play an important role in transferring rod signals to the ON-type ganglion cells of the cone pathway in the rabbit retina.I.-B. Kim and M.R. Park contributed equally to this work.This work was supported by the Ministry of Science and Technology of Korea (grant no. M1-0108-00-0059; Neurobiology Support Grant).  相似文献   

17.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

18.
19.
Neurokinin1 (NK1) receptors are up-regulated in the spinal cord during peripheral inflammation, but the biochemical mediators regulating this change have not been resolved. The promoter region of the gene encoding the NK1 receptor contains a cyclic AMP (cAMP)-responsive element. Therefore, we used primary cultures of neonatal rat spinal cord to test whether increasing intracellular cAMP can increase expression of NK1 receptors. Treatment with dibutyryl-cAMP (dbcAMP) resulted in a time-dependent increase in 125I-Bolton-Hunter-substance P (BHSP) binding in the cultures; treatment with dibutyryl-cyclic GMP did not. Treatment with forskolin plus 3-isobutyl-1-methylxanthine mimicked the increase in binding, providing further evidence for the involvement of cAMP in this effect. Scatchard analyses indicated that the increase in BHSP binding was due to an increase in binding capacity. The cAMP-induced increase in BHSP binding was preceded by an increase in levels of mRNA for NK1 receptor and was attenuated by pretreatment with cycloheximide. These data indicate that the cAMP-induced increase in binding was due to increased synthesis of NK1 receptors. Comparison of substance P (SP)-induced production of inositol phosphates between cultures pretreated with dbcAMP and controls suggested that increased expression of NK1 receptors did not result in increased generation of second messenger by NK1 receptor activation. Together, these data indicate that a persistent increase in intracellular cAMP increases expression of NK1 receptors. Because NK1 receptor activation contributes to increased excitability of spinal neurons, the increased expression of NK1 receptors may be important in maintaining responsiveness of spinal neurons to SP in central mechanisms underlying hyperalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号