首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
探索恒河猴骨髓间质干细胞(MSC)的体外分离培养方法,为其应用提供实验基础。取恒河猴骨髓细胞悬液,经梯度离心去除大部分血细胞,取含有MSC的中间单核细胞层,在含10%胎牛血清及1 ng/mL碱性成纤维细胞生长因子的L-DMEM中培养扩增,并不断换液去除杂细胞,经过18 d的原代培养,获得呈致密单层生长的MSC,其形态为较规则的长梭形细胞,排列有方向性,呈现一定的漩涡状、辐射状生长趋势。将原代细胞以1∶2传代,传代培养后期,细胞增殖速度逐渐变缓,细胞形态逐渐出现三角形、多边形及扁平宽大形等不规则形态。结果显示,恒河猴骨髓间质干细胞可在体外进行传代培养,但需进一步优化其培养条件。  相似文献   

2.
为建立有效纯度高的恒河猴星形胶质细胞体外培养体系,无菌条件下取6月龄恒河猴婴猴的大脑皮质,除去白质,充分剪碎后机械吹打制成细胞悬液接种培养,待原代培养的细胞长满培养皿后,通过恒温摇床振荡和传代差速贴壁除去寡突胶质细胞、成纤维细胞等,得到纯化后的星形胶质细胞,并用GFAP-FITC(glial fibrillary acidic protein-fluorescein isothiocyanate)免疫荧光法对所获细胞进行鉴定。分离培养的细胞具备典型的星形胶质细胞形态,并表达星形胶质细胞特异性抗原GFAP(glial fibrillary acidic protein),纯化后获得了高纯度的恒河猴星形胶质细胞。采用该培养方法成功建立原代恒河猴星形胶质细胞培养体系,为体外研究嗜神经性病毒、神经系统疾病及其相关中枢神经病理机制等提供了可靠的细胞模型。  相似文献   

3.
目的建立从小鼠微粒骨中获取间充质干细胞(MSC)方法,并观察比较野生型小鼠(WT鼠)和端粒酶基因敲除小鼠(Terc-/-鼠)MSC生物学特性的差异。方法采用体外细胞培养技术,从小鼠自体微骨片中分离纯化WT鼠和Terc-/-鼠的间充质干细胞,通过培养和传代,研究其增殖及生长特征。结果原代培养及传代培养显示,WT鼠自体骨间充质干细胞比Terc-/-鼠具有活跃的增殖倍增能力。结论从鼠的微骨片获取MSC的方法重复性好,细胞纯度和细胞数量优于以往从骨髓获取MSC的方法,Terc-/-鼠MSC生长增殖能力明显弱于WT鼠,其机制的研究有待深入。  相似文献   

4.
间充质干细胞体外调控骨髓造血前体细胞向单核系分化   总被引:3,自引:0,他引:3  
研究间充质干细胞(MSC)能否在体外调控造血。体外分离培养人骨髓来源的MSC,RT-PCR检测其造血生长因子的表达,并以其为饲养层细胞,接种骨髓单个核细胞(MNC),观察生长情况,并通过形态学观察和流式细胞术分析,鉴定细胞来源和分化方向。结果显示,MSC构成性表达SCF、Flt3L和M-CSF,不表达C-CSF和GM-CSF,在骨髓MNC和MSC共培养体系中,大约2周左右可以看到大量的圆形细胞粘附在梭型MSC上生长,细胞胞体为圆形,胞浆较丰富,胞核为圆形、半月型或肾型,部分细胞呈典型的单核细胞形态,流式细胞术分析该类细胞表达CDl4,不表达CDl5、CD41、glycophorin A、CD5和CDl9。表明不需要添加外源性造血生长因子,间充质干细胞能在体外调控骨髓造血前体细胞向单核系分化,其定向分化可能与MSC分泌造血生长因子及MSC与造血细胞间相互作用有关。  相似文献   

5.
问充质干细胞体外调控骨髓造血前体细胞向单核系分化   总被引:2,自引:0,他引:2  
研究间充质干细胞(MSC)能否在体外调控造血.体外分离培养人骨髓来源的MSC,RT-PCR检测其造血生长因子的表达,并以其为饲养层细胞,接种骨髓单个核细胞(MNC),观察生长情况,并通过形态学观察和流式细胞术分析,鉴定细胞来源和分化方向.结果显示,MSC构成性表达SCF、Flt3L和M-CSF,不表达G-CSF和GM-CSF,在骨髓MNC和MSC共培养体系中,大约2周左右可以看到大量的圆形细胞粘附在梭型MSC上生长,细胞胞体为圆形,胞浆较丰富,胞核为圆形、半月型或肾型,部分细胞呈典型的单核细胞形态,流式细胞术分析该类细胞表达CD14,不表达CD15、CD41、glycophorin A、CD5和CD19.表明不需要添加外源性造血生长因子,间充质干细胞能在体外调控骨髓造血前体细胞向单核系分化,其定向分化可能与MSC分泌造血生长因子及MSC与造血细胞间相互作用有关.  相似文献   

6.
目的:探讨骨髓间充质干细胞(BMSCs)体外分离培养以及扩增的方法并鉴定。方法:取100g左右雄性SD大鼠后肢股骨、胫骨骨髓,原代全骨髓培养法,多次传代纯化,体外扩增后,观察细胞形态,并免疫组化及流式细胞仪检测cd34、cd90、cd105细胞因子,鉴定是否为BMSCs。结果:所获取的细胞呈长梭形,呈现特征性的漩涡状生长,CD34阴性,CD90、CD105阳性。结论:利用全骨髓培养法成功分离骨髓间充质干细胞,10代以内的细胞纯度高,活性好。全骨髓培养较为简便、易行。  相似文献   

7.
目的:探讨骨髓间充质干细胞(BMSCs)体外分离培养以及扩增的方法并鉴定。方法:取100g左右雄性SD大鼠后肢股骨、胫骨骨髓,原代全骨髓培养法,多次传代纯化,体外扩增后,观察细胞形态,并免疫组化及流式细胞仪检测cd34、cd90、cd105细胞因子,鉴定是否为BMSCs。结果:所获取的细胞呈长梭形,呈现特征性的漩涡状生长,CD34阴性,CD90、CD105阳性。结论:利用全骨髓培养法成功分离骨髓间充质干细胞,10代以内的细胞纯度高,活性好。全骨髓培养较为简便、易行。  相似文献   

8.
脐血CD-34单个核细胞来源间充质干细胞研究   总被引:2,自引:0,他引:2  
目的 :探讨分离培养脐血CD-3 4 细胞来源间充质干细胞 (MSC)及研究其生物学特征。方法 :取足月妊娠健康产妇胎儿脐血 ,分离其中单个核细胞 (MNC) ,去除CD 3 4 细胞 ,体外用低糖型DMEM培养基培养。观察细胞形态、测定生长曲线、利用流式细胞仪对培养细胞进行表型测定、细胞周期分析、体外诱导分化实验以及检测造血因子的表达情况。结果 :脐血CD-3 4 细胞中可培养出间充质干细胞 ,可诱导向成骨和脂肪细胞分化并表达IL 6、SCF和SDF 1等造血生长因子。结论 :从足月妊娠健康产妇脐血CD-3 4 细胞可分离培养出间充质干细胞 ,具有与其它来源MSC类似的表型及分化潜能 ,在体外传代可保持其低分化状态并表达造血因子 ,可作为组织工程的种子细胞和具有促进造血作用  相似文献   

9.
目的探讨Nucleostemin(NS)在大鼠骨髓基质干细胞向成骨细胞诱导分化中的机制及作用。方法取4~6周龄雄性SD大鼠两侧股骨、胫骨骨髓基质细胞,原代及传代培养。取第3代骨髓间充质干细胞分别用普通和矿化培养基培养,通过相差倒置显微镜观察细胞生长、MTT法检测细胞增殖、碱性磷酸酶和茜素红钙染色了解成骨活性。免疫组化SABC法及免疫荧光法检测NS在细胞中的表达情况,比较NS分别在普通培养基和成骨细胞诱导培养基作用下的表达情况。结果大鼠骨髓间充质干细胞在矿化培养基诱导下其NS的表达较普通培养基培养下的表达明显减弱,且呈时间依赖性衰减。成骨细胞的NS表达则为阴性。在矿化液作用下,骨髓间充质干细胞可诱导为成骨细胞。MTT显示矿化液培养细胞生长潜伏期长,对数生长期较对照组延长。结论NS作为核干细胞因子,在干细胞中和某些肿瘤细胞中表达丰富。细胞分化后,其表达明显减少。因此,NS很可能作为大鼠基质干细胞是否具有潜在分化能力的标志性因子。  相似文献   

10.
探讨建立兔骨髓间质干细胞(BMSCs)的体外分离纯化、扩增和鉴定的方法,为BMSCs的进一步诱导分化和应用奠定基础。首先抽取兔髂骨骨髓,采用Percoll密度梯度离心法得到骨髓单个核细胞,接种后形成单层贴壁细胞,经胰蛋白酶消化后传代培养扩增,倒置相差显微镜观察细胞生长状态,细胞免疫组化检测CD73、CD34。结果表明,成功建立了兔BMSCs体外分离及培养扩增的方法,发现BMSCs表现贴壁生长,P0代时呈集落生长,细胞呈梭形,传代后细胞增殖速度加快,形态开始多样化;细胞免疫组化显示BMSCs表达CD73,未表达CD34,反复传代后CD73表达效率增高。上述研究表明,Percoll密度梯度离心联合骨髓贴壁法,能有效分离、纯化和扩增BMSCs,提取的细胞具有BMSCs的生长特性和抗原表型,其中P3~P6代细胞增殖能力强,可用于进一步的研究工作。  相似文献   

11.
While traditional cell culture methods have relied on growing cells as monolayers, three-dimensional (3D) culture systems can provide a convenient in vitro model for the study of complex cell–cell and cell–matrix interactions in the absence of exogenous substrates and may benefit the development of regenerative medicine strategies. In this study, mesenchymal stem cell (MSC) spheroids, or “mesenspheres”, of different sizes, were formed using a forced aggregation technique and maintained in suspension culture for extended periods of time thereafter. Cell proliferation and differentiation potential within mesenspheres and dissociated cells retrieved from spheroids were compared to conventional adherent monolayer cultures. Mesenspheres maintained in growth medium exhibited no evidence of cell necrosis or differentiation, while mesenspheres in differentiation media exhibited differentiation similar to conventional 2D culture methods based on histological markers of osteogenic and adipogenic commitment. Furthermore, when plated onto tissue culture plates, cells that had been cultured within mesenspheres in growth medium recovered morphology typical of cells cultured continuously in adherent monolayers and retained their capacity for multi-lineage differentiation potential. In fact, more robust matrix mineralization and lipid vacuole content were evident in recovered MSCs when compared to monolayers, suggesting enhanced differentiation by cells cultured as 3D spheroids. Thus, this study demonstrates the development of a 3D culture system for mesenchymal stem cells that may circumvent limitations associated with conventional monolayer cultures and enhance the differentiation potential of multipotent cells.  相似文献   

12.
The clinical potential of mesenchymal stem cells (MSC) in tissue engineering and regenerative medicine is due to their self-renewal, proliferation and multi-lineage differentiation potential. Clinical use requires large cell numbers; which can, theoretically, be generated by ex vivo expansion of plastic adherent, MSC subpopulation, of bone marrow cells (BMC). Effects of serial culture on MSC phenotype were investigated using non-gel based quantitative proteomic methodology for static monolayer cultures of rat BMC. In total, 382 proteins were relatively quantified (≥ 2 peptides). Nine proteins were up-regulated and seven down-regulated at passage 4 relative to passage 2 (p ≤ 0.05). We propose that serial culture impacts on MSC expansion (observed decline in colony forming potential and colony size) is through a combination of osteogenic differentiation and ageing/senescence and propose six novel protein biomarkers as candidates for quality control purposes in bioprocessing.  相似文献   

13.
OBJECTIVES: Recent data show that Imatinib mesylate (IM) also affects haematopoietic stem cells (HSC), T lymphocytes and dendritic cells that do not harbour constitutively active tyrosine kinases. MATERIALS AND METHODS: We evaluated possible effects of IM on human bone marrow-derived mesenchymal stem cells (MSC) in vitro. RESULTS: Screening the activity of 42 receptor tyrosine kinases revealed an exclusive inhibition of platelet-derived growth factor receptorbeta (PDGFRbeta). Analysis of downstream targets of PDGFRbeta demonstrated IM-mediated reduction of Akt and Erk1/2 phosphorylation. Culture of MSC with IM led to the reversible development of perinuclear multi-vesicular bodies. The proliferation and clonogenicity of MSC were significantly reduced compared to control cultures. IM favoured adipogenic differentiation of MSC whereas osteogenesis was suppressed. The functional deficits described led to a 50% reduction in the support of clonogenic haematopoietic stem cells, cultured for 1 month on a monolayer of MSC with IM. CONCLUSION: In summary, inhibition of PDGFRbeta and downstream Akt and Erk signalling by IM has a significant impact on proliferation and differentiation of human MSC in vitro.  相似文献   

14.
BACKGROUND: Human mesenchymal stem cells (hMSC) have been isolated and characterized extensively for a variety of clinical applications. Yet it is unclear how the phenomenon of hMSC plasticity can be safely and reasonably exploited for therapeutic use. METHODS: We have generated mesenchymal stem cells (MSC) from normal human BM and identified a novel cell population with a transformed phenotype. This cell population was characterized by morphologic, immunophenotypic, cytogenetic analyzes and telomerase expression. Its tumorigenicity in NOD/SCID mice was also studied. RESULTS: A subpopulation of cells in hMSC culture was noted to appear morphologically distinct from typical MSC. The cells were spherical, cuboidal to short spindle in shape, adherent and exhibited contact independent growth. Phenotypically the cells were CD133(+), CD34(-), CD45(-), CD90(low), CD105(-), VEGFR2(+). Cytogenetic analysis showed chromosome aneuploidy and translocations. These cells also showed a high level of telemerase activity compared with typical MSC. Upon transplantation into NOD/SCID mice, multiple macroscopic solid tumors formed in multiple organs or tissues. Histologically, these tumors were very poorly differentiated and showed aggressive growth with large areas of necrosis. DISCUSSION: The possible explanations for the origin of this cell population are: (1) the cells represent a transformed population of MSC that developed in culture; (2) abnormal cells existed in the donor BM at rare frequency and subsequently expanded in culture. In either case, the MSC culture may provide a suitable environment for transformed cells to expand or propagate in vitro. In summary, our data demonstrate the potential of transformed cells in hMSC culture and highlight the need for karyotyping as a release criteria for clinical use of MSC.  相似文献   

15.
The controversial effect of autologous serum (AS) on human mesenchymal stem cells (MSC) was studied in rat MSC culture. Rat bone marrow cells were plated in a medium containing either FBS (fetal bovine serum) or AS were cultured to passage 3, during which the population doubling number (PDN) of both cultures were measured and compared statistically. The number of viable cells, the cell colonogic activity, and cell growth rate were also compared. In addition, mineralization in the osteogenic cultures from each system was measured. Our data indicated that AS enriched medium provided a microenvironment in which growth rate as well as bone differentiation of the isolated MSCs were significantly higher than in FBS enriched medium.  相似文献   

16.
The in vitro culture of porcine bone marrow-derived mesenchymal stem cells (MSCs) was used for the investigation of adult stem cell biology. Isolated porcine MSCs possessed the ability to proliferate extensively in an antioxidants-rich medium containing 5% fetal bovine serum (FBS). Greater than 40 serial MSC passages and 100 cell population doublings have been recorded for some MSC batches. Early and late passage MSCs were defined here as those cultures receiving less than 5 trypsin passages and more than 15 trypsin passages, respectively. Consistent with their robust ability to proliferate, both the early and late passage MSCs expressed the cell-cycle promoting enzyme p34cdc2 kinase. Late MSCs, however, exhibited certain features reminiscent of cellular aging such as actin accumulation, reduced substrate adherence, and increased activity of lysosomal acid beta-galactosidase. Early MSCs retained the multipotentiality capable of chondrogenic, osteogenic, and adipogenic differentiation upon induction in vitro. In contrast, late MSCs were only capable of adipogenic differentiation, which was greatly enhanced at the expense of the osteochondrogenic potential. Along with these changes in multipotentiality, late MSCs expressed decreased levels of the bone morphogenic protein (BMP-7) and reduced activity of alkaline phosphatase. Late MSCs also exhibited attenuated synthesis of the hematopoietic cytokines granulocyte colony-stimulating factor (G-CSF), leukemia inhibitory factor (LIF), and stem cell factor (SCF). The long-term porcine MSC culture, thus, provides a model system to study the molecular interplay between multiple MSC differentiation cascades in the context of cellular aging.  相似文献   

17.
Cell morphology is known to modulate the multipotential lineage commitment of stem cells. We provide a new strategy to induce the early lineage commitment of human mesenchymal stem cells (hMSCs) toward a cardiomyogenic fate through the formation of cell aggregates. A surface-immobilized polyamidoamine dendrimer with fifth generation of dendron structure was used during the culturing of hMSCs. These hMSCs cultured on the G5 surface formed aggregates through active migration and division. More than 22% of cardiac troponin-T (cTnT)-positive (cTnT+) cells in aggregates formed on the dendrimer surface; the population formed on the dendrimer surface was higher than that in conventional culture vessel. When cell aggregate was reseeded onto a fresh G5 surface, single cells migrated out of the aggregates, proliferated, and formed new aggregates. This passage method, accompanied with repetitive aggregate dispersion and formation, was applied to cultures over 40 days. The proportion of cTnT+ cells increased to 62% by the end of third passage. Our results suggest that culturing hMSCs on G5 surface results in directed commitment of the hMSCs toward a cardiomyocyte-like fate.  相似文献   

18.
19.
Mesenchymal stem cells (MSC) that can differentiate to various connective tissue cells may be useful for autologous cell transplantation to defects of bone, cartilage, and tendon, if MSC can be expanded in vitro. However, a short life span of MSC and a reduction in their differentiation potential in culture have limited their clinical application. The purpose of this study is to identify a growth factor(s) involved in self-renewal of MSC and the maintenance of their multilineage differentiation potential. Fibroblast growth factor-2 (FGF-2) markedly increased the growth rate and the life span of rabbit, canine, and human bone marrow MSC in monolayer cultures. This effect of FGF-2 was more prominent in low-density cultures than in high-density cultures. In addition, all MSC expanded in vitro with FGF-2, but not without FGF-2, differentiated to chondrocytes in pellet cultures. The FGF+ MSC also retained the osteogenic and adipogenic potential throughout many mitotic divisions. These findings suggest that FGFs play a crucial role in self-renewal of MSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号