首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 147 毫秒
1.
水稻株形对纹枯病抗性的影响   总被引:8,自引:0,他引:8  
利用240份源于珍汕97B/明恢63的重组自交系水稻(Oryza sativa L.)群体,连续2年调查纹枯病病级与水稻生育期、株高和叶片长宽等18个株形性状的关系。对株形性状与纹枯病病级进行了偏相关分析。实验结果,只有植株松紧度与病级表型偏相关两年中都达到了显著或极显著水平,倒2叶基角、穗层整齐度等8个性状与病级之间的偏相关只有一年达显著或极显著水平。结合构建的分子标记遗传连锁图谱,对各性状进行QTL定位。在抗纹枯病QTL相近区间仅检测到控制分蘖角、植株松紧度和倒2叶基角的QTLs,未发现其余株形性状QTLs与抗纹枯病QTLs分布在同一染色体上。结果表明,水稻对纹枯病的抗性主要是由本身抗性基因控制,株形对纹枯病抗性表达的影响主要是间接影响,即通过改变田间小气候而影响发病程度。抗纹枯病育种在累加主效抗纹枯病QTLs的同时,也要注重选择不利于纹枯病发展的株形性状。  相似文献   

2.
水稻纹枯病抗性QTL分析   总被引:41,自引:4,他引:37  
对灿稻窄叶青8号(ZYQ8)和粳稻京系17(JX17)以及由它们构建的加倍单倍体(DH)群体,分别在杭州和海南岛,采用注射器接种法进行纹枯病抗性鉴定,并使用该群体的分子链锁图谱进行数量性状座位(QTL)分析。共检测到4个抗纹枯病的QTL(qSBR-2、qSBR-3、qSBR-7和qSBR-11),分别位于第2、第3、第7和第11染色体。其中qSBR-2、qSBR-3、qSBR-7的抗性基因由抗病亲本ZYQ8贡献,而qSBR-11的抗性基因来自感病亲本JX17。qSBR-2、qSBR-3、qSBR-7在杭州和海南岛都能检测到,而qSBR-11只在杭州检测到。在杭州的实验中,纹枯病病级与秆长和抽穗期呈显著负相关;在控制秆长和抽穗期的QTL中,控制秆长的qCL-3与qSBR-3位于同一染色体区域,其余QTL与抗纹枯病的QTL之间无连锁关系。  相似文献   

3.
水稻抗纹枯病遗传育种研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
纹枯病是世界性水稻病害, 在中国南方部分水稻种植区已成为水稻第一大病害. 但对水稻抗纹枯病遗传育种研究却进展缓慢. 抗性鉴定方法、抗病基因定位和抗性资源发掘是抗病遗传育种研究中的最重要内容, 亦是抗病品种选育的基础. 本文综述了近年提出的水稻纹枯病抗性鉴定方法, 对抗病基因QTL进行物理图谱整合, 分析了抗病QTL的定位概况, 同时对抗源发掘和抗病育种方面的新进展进行了归纳与讨论, 最后提出下一步研究方向, 以期为加速水稻抗纹枯病遗传育种进程提供帮助.  相似文献   

4.
对水稻(OryzasativaL.)籼(indica)、粳(Japonica)交(窄叶青8号×京系17)通过一粒传获得了一个自交9代的重组自交系(RIL)群体,该群体含有107个稳定纯合的株系,通过构建分子连锁图谱,对水稻播抽期、株高、每穗颖花数、每穗实粒数、200粒重和结实率进行数量性状基因座位(QTL)分析,定位了影响播抽期的2个QTLs、株高的2个QTLs、每穗颖花数的2个QTLs和每穗实粒数的1个QTL。其中,控制播抽期的1个QTL即qHD-8为主效基因,控制株高的1个QTL即qPH-1为主效基因,其余为微效基因。同时分析了影响水稻生产力的数量性状基因座位间的互作。结果表明,影响播抽期、株高、每穗颖花数、每穗实粒数和结实率的互适型互作共有24个,对性状有6.2%~10.9%的贡献率。  相似文献   

5.
240份玉米自交系纹枯病抗性鉴定与评价   总被引:1,自引:0,他引:1  
在人工接种条件下,连续3年对240份玉米自交系纹枯病抗性进行鉴定和评价,分析了玉米纹枯病抗性与主要农艺性状的相关性。结果表明,玉米纹枯病抗性资源较为缺乏,240份自交系中无免疫或高抗的材料,有中抗自交系4份、感病自交系18份、高感自交系218份。旅大红骨、Reid、PA和塘四平头类群自交系中未发现玉米纹枯病抗源,PB类群和Lancaster类群自交系纹枯病抗性相对较好,今后应主要从这两类种质中寻找玉米纹枯病抗源。玉米纹枯病病情指数与株高、穗位高、穗位高/株高、穗下节间数和穗下平均节间长均呈极显著负相关,这些表型可以作为非接种条件下筛选抗玉米纹枯病种质的参考指标。  相似文献   

6.
水稻株高、抽穗期和有效穗数的QTL与环境的互作分析   总被引:29,自引:3,他引:26  
株高、抽穗期和有效穗数是水稻的重要农艺性状,合适的株高、抽穗期和有效穗数对水稻的高产稳产是至关重要的。该实验应用中156/谷梅2号的重组自交系(RIL)群体,建立由168个DNA分子标记组成的遗传连锁图,以一年两季作为不同的环境效应,对水稻株高、抽穗期和有效穗数进行了非条件和条件QTL定位,在非条件QTL定位中共检测到7个株高QTLs、5个抽穗期QTLs和3个有效穗数QTLs和10对加加上位性互作位点,条件QTL定位结果表明,抽穗期这一性状对株高和有效穗数QTLs的表达既有抑制作用,也有较大的贡献率。  相似文献   

7.
为拓宽小麦茎腐病(又称茎基腐病)抗源种类,筛选抗茎腐病小麦新种质,对43份转TaPIMP1、AtNPR1和Gastrodianin基因小麦纯合株系,进行目的基因表达分析,以及茎腐病、纹枯病和赤霉病抗性鉴定。结果表明,转基因株系的目的基因均能正常表达;转基因株系间茎腐病抗性差异明显,24份转基因株系茎腐病抗性,比受体对照扬麦12显著提高;转基因株系茎腐病抗性与纹枯病抗性相关性显著,与赤霉病相关性不显著。结合农艺性状鉴定,筛选出5份抗茎腐病转基因株系,其中2份兼抗纹枯病和赤霉病,1份兼抗纹枯病,可作为长江中下游麦区茎腐病备用抗源。  相似文献   

8.
家蚕茧质性状的QTL定位研究   总被引:3,自引:0,他引:3  
采用QTLMapper 2.0 QTL作图软件,对F2群体的家蚕全茧量、茧层量、茧层率和蛹体重等性状进行了QTL定位分析,分别检测出7个、6个、2个、8个有显著效应分量的QTLs,分布于7个、5个、2个、7个不同的连锁群。控制全茧量、茧层量的QTLs一般存在复杂的上位性效应。对全茧量性状,有3对QTLs存在显著的加加上位性效应,其中1对还存在加显、显显互作;共有3个QTLs存在显著的显性效应,1个存在显著的加性效应。对茧层量QTLs,发现1对QTLs存在极显著的各项遗传效应,包括上位性效应;1对QTLs被检测到显著的显显互作,1个QTL具有显著的显性效应,并与另一个QTL存在显著的加加互作。茧层率、蛹体重主要受加性或显性的QTLs作用,没有发现茧层率QTLs的上位性效应,蛹体重的有效QTL大都呈现显著的负向显性效应,只有一对QTLs存在显著的加加上位性效应。第2、3、4、11、13、24、34、37、40连锁群是两个或多个性状QTLs分布的共同连锁群。全茧量和茧层量存在共同的QTL或染色体区域,育种上可通过适当选配,利用基因的互作效应,同步改良这两个性状。  相似文献   

9.
水稻耐亚铁毒QTLs的定位   总被引:6,自引:0,他引:6  
万建林  翟虎渠  万建民 《遗传学报》2005,32(11):1156-1166
亚铁毒是潜育性水稻土中限制水稻产量的主要因子。利用龙杂8503/IR64的F2和等价的F3群体,在营养液中培养来定位耐亚铁毒的QTLs。通过构建101SSR标记的遗传连锁图谱来确定耐亚铁毒QTLs的位置和特性。借助叶片棕色斑点指数、株高和最大根长3个性状,利用营养液在水稻苗期来评价F2单株、F3群体和亲本龙杂8503、IR64,共检测到叶片棕色斑点指数、株高和最大根长的QTLs20个,分布在水稻的10条染色体上,表明这些性状受多基因控制。控制叶片棕色斑点指数的QTLs分别定位在第1染色体的RM315-RM212、第2染色体的RM6-RM240和第4染色体的RM252-RM451之间。与前人的研究结果比较发现:1)位于第4染色体RM252-RM451之间的控制叶片棕色斑点指数的QTL与水稻功能图谱上控制叶绿素含量减少的QTL的位置一致。另一个位于第1染色体的RM315-RM212之间的控制叶片棕色斑点指数的QTL与水稻功能图谱上位于C178-R2635之间控制叶绿素含量的QTL连锁。2)位于第2染色体RM6-RM240之间的第3个控制叶片棕色斑点指数的QTL与位于RZ58-CD0686的控制钾吸收的QTL连锁。  相似文献   

10.
利用“Lemont/特青”重组自交系(RI)群体研究了水稻对白叶枯病致病菌株CR6的水平抗性。双亲和F1均为感病,重组自交系(RILs)的病斑长度(LL)为带有明显双向超亲的连续变异,显示出典型的多基因遗传特征。部分重组自交系(约占总数90%)对CR6表现高水平抗性(LL≤3cm)。利用由178个良好分离的RFLP标记构建的饱和连锁图,鉴定出11个数量形状位点(QTLs)和3对互作位点解释了RI群体的大部分病斑变异。抗性QTLs定位于水稻第2、3、4、8、9、10、11、12等8条染色体。在来自特青的Xa-4位点上检测到一个有很大加性效应的QTL。其余10个QTLs的抗性等位基因有7个来自特青,3个来自Lemont。研究结果表明多个数量性状位点和失效主基因(Xa-4)残效的累加效应构成了对白叶枯病水平抗性的遗传基础,是重要的抗性组成部分。可以预期在DNA标记的辅助下,这些数量性状位点与主效抗性基因的组合将使水稻品种具有持久抗病性。  相似文献   

11.
Sheath blight caused by Rhizoctonia solani Kühn is one of the important diseases of rice, resulting in heavy yield loss in rice every year. No rice line resistant to sheath blight has been identified till date. However, in some rice lines a high degree of resistance to R. solani has been observed. An indica rice line, Tetep, is a well documented source of durable and broad spectrum resistance to rice blast as well as quantitative resistance to sheath blight. The present study identified genetic loci for quantitative resistance to sheath blight in rice line Tetep. A mapping population consisting of 127 recombinant inbred lines derived from a cross between rice cultivars HP2216 (susceptible) and Tetep (resistant to sheath blight) was evaluated for sheath blight resistance and other agronomic traits for 4 years across three locations. Based on sheath blight phenotypes and genetic map with 126 evenly distributed molecular markers, a quantitative trait loci (QTLs) contributing to sheath blight resistance was identified on long arm of chromosome 11. Two QTL mapping approaches i.e., single marker analysis and composite interval mapping in multi environments were used to identify QTLs for sheath blight resistance and agronomical traits. The QTL qSBR11-1 for sheath blight resistance was identified between the marker interval RM1233 (26.45 Mb) to sbq33 (28.35 Mb) on chromosome 11. This region was further narrowed down to marker interval K39516 to sbq33 (~0.85 Mb) and a total of 154 genes were predicted including 11 tandem repeats of chitinase genes which may be responsible for sheath blight resistance in rice line Tetep. A set of 96 varieties and a F2 population were used for validation of markers linked to the QTL region. The results indicate that there is very high genetic variation among varieties at this locus, which can serve as a starting point for allele mining of sheath blight resistance.  相似文献   

12.
Rice sheath blight, caused by Rhizoctonia solani Kühn, is one of the three major diseases of rice. The present study was conducted with an F2 clonal population of Jasmine 85/Lemont. The F2 population, including 128 clonal families, was inoculated by short toothpicks incubated with a strain, RH-9 of the fungus. Based on field disease evaluations in 2 years and a genetic map with 118 evenly distributed molecular markers, we identified six quantitative trait loci (QTLs) contributing to sheath blight resistance. These QTLs, qSB-2, qSB-3, qSB-7, qSB-9-1, qSB-9-2 and qSB-11, were located on chromosomes 2, 3, 7, 9 and 11, respectively. The respective alleles of qSB-2, qSB-3, qSB-7, and qSB-9-2 from Jasmine 85 could explain 21.2%, 26.5%, 22.2% and 10.1% of the total phenotypic variation, respectively; while the alleles of qSB-9-1 and qSB-11 from Lemont could explain 9.8% and 31.2% of the total phenotypic variation. Of these qSB-2 and qSB-11 could be detected in both years, while remaining loci were detected only in a single year. Furthermore, four QTLs (qHD-2, qHD-3, qHD-5 and qHD-7) controlling heading date and three QTLs (qPH-3, qPH-4 and qPH-11) controlling plant height were also identified. Though rice sheath blight resistance may be influenced by morphological traits, such as heading date and plant height, in the present study most detected resistance loci were not linked to the loci for heading date or plant height. Received: 1 September 1999 / Accepted: 24 January 2000  相似文献   

13.
Bacterial blight (BB) is one of the major diseases that affect rice productivity. In previous studies, BB resistance was transferred to cultivated rice Oryza sativa from wild rice Oryza meyeriana using asymmetric somatic hybridization. One of the resistant hybrid progenies (Y73) has also been shown to possess novel resistance gene(s) different from any of those previously associated with BB resistance. We have mapped quantitative trait loci (QTLs) for BB resistance in a recombinant inbred line (RIL) population derived from a cross between Y73 and a BB‐susceptible cv. IR24. Five QTLs were detected where Y73 alleles contributed to increased BB resistance. Three minor QTLs were identified on chromosomes 3, 10 and 11, and two major QTLs on chromosomes 1 and 5, respectively. QTL on chromosome 5, designated qBBR5, had the strongest effect on BB resistance, explaining approximately 37% of the phenotypic variance. Using the same RIL population, we also mapped QTLs for agronomic traits including plant height (PH), heading date (HD), plant yield (PYD) and PYD component traits. A total of 21 QTLs were identified, of which four were detected for PH, six for HD, three for panicle number per plant (PNPP), one for spikelets per panicle (SPP), six for 1000‐grain weight (TGW) and one for PYD. qPH1 (a QTL for PH) was found in the same interval as qBBR1 for BB resistance, and qHD11 for HD and qBBR11 for BB resistance also shared a similar interval. Additionally, BB resistance was significantly correlated with PH or HD in the RIL population. This suggests that the resistance genes may have pleiotropic effects on, or close linkage to, genes controlling PH or HD. These results will help deduce the resistance mechanisms of the novel resistance gene(s) and provide the basis for cloning them and using them in marker‐assisted breeding.  相似文献   

14.
Breeding for wheat varieties resistant to Stagonospora nodorum blotch (SNB) is the most sustainable strategy for controlling the disease. In order to map quantitative trait loci (QTLs) for SNB resistance we analysed 204 recombinant inbred lines of the cross between the winter wheat (Triticum aestivum L.) variety Forno and the winter spelt (Triticum spelta L.) variety Oberkulmer. We determined the level of resistance of adult plants to leaf blotch (SNL) and glume blotch (SNG) as well as morphological traits for 2 years after artificial inoculation with S. nodorum. Using composite interval mapping and LOD > 3.7, we detected ten QTLs for SNG blotch resistance (six inherited from the susceptible parent Forno) and 11 QTLs for SNL resistance (four inherited from Forno) across 2 years. Both resistance traits were moderately correlated (r = 0.52) and had only one common QTL. For SNL resistance, seven QTLs were not associated with QTLs for morphological traits. Among them, QSnl.eth-2D, QSnl.eth-4B and QSnl.eth-7B3 had major effects (R(2) > 13%) and were potential candidates for marker-assisted selection. For SNG, the major QTL on chromosome 5A, explaining 36% of the phenotypic variance for resistance, was associated with the q locus conferring the spelt morphology (long lax ear, long culm and hard glumes). Only QSng.eth-1BS, which explained 7% of the variance for resistance to SNG blotch, was not associated with QTLs for morphological traits. The consequences for breeding programmes are discussed.  相似文献   

15.
Validation of quantitative trait loci (QTLs) is a prerequisite to marker assisted selection (MAS), however, only a fraction of QTLs identified for important plant traits have been independently tested for validation. Resistance to the diseases kernel discoloration (KD) and Fusarium head blight (FHB) in barley is complex and technically difficult to assess, and therefore QTLs for these traits are suitable targets for MAS. We selected two lines, from a QTL mapping population created using the resistant variety Chevron, and crossed them to susceptible parents to generate two validation populations. Genetic maps of both populations were developed for five chromosomes covering 15 selected regions containing QTLs for FHB severity, KD score and concentration of deoxynivalenol (DON), a mycotoxin produced by the FHB pathogen. QTL analyses using these validation populations confirmed that five of the possible 15 QTL regions were associated with at least one of the three traits. While some QTL were detected inconsistently across environments, QTL that could be subjected to validation in both populations were confirmed in both populations in seven out of eight instances. A QTL for KD score on chromosome 6(6H) was confirmed in both validation populations in eight of nine environments and was also associated with FHB in three of six environments. A QTL for FHB on chromosome 2(2H) was confirmed and was also associated with KD and heading date. Marker assisted selection at these two QTLs should enhance disease resistance, however, the QTL on chromosome 2(2H) will also delay heading date.  相似文献   

16.
Quantitative trait loci (QTL) were identified for heading date and plant height in rice ( Oryza sativa L.) using a recombinant inbred line population consisting of 241 lines. Totally 4 QTLs for heading date and 4 QTLs for plant height were detected in three years. The QTL with large effects located in the interval C1023-R1440 on chromosome 7 was simultaneously detected in three years for both traits. In order to distinguished the interval whether contained one QTL with pleiotropy effect or two close linked QTLs, a recombinant line RIL50, whose genetic background was high similar to Zhenshan 97 except the regions covered the major QTL from Minghui 63, was selected to cross with Zhenshan 97. A BC1F2 population from the cross, which could be regarded as near isogenic lines (NIL) with the targeted QTL (QTL-NIL), was used to collect heading date and plant height data. The frequency distribution of the two traits in the BC1F2 population was bimodal, and their segregation ratios were in accordance with the expected Mendelian inheritance ratios. Normally, the short plants flowered early in the population, the high plants with late heading date, but the relationships between the plant height and the heading date of 6 plants conflicted with the case. The above results clearly demonstrated that QTL could be treated as single Mendelian factor. Moreover, there are two close linked genes controlling the heading date and the plant height on chromosome 7, respectively.  相似文献   

17.
Drought is a major abiotic stress limiting rice production and yield stability in rainfed ecosystems. Identifying quantitative trait loci (QTL) for rice yield and yield components under water limited environments will help to develop drought resilient cultivars using marker assisted breeding (MAB) strategy. A total of 232 recombinant inbred lines of IR62266/Norungan were used to map QTLs for plant phenology and production traits under rainfed condition in target population of environments. A total of 79 QTLs for plant phenology and production traits with phenotypic variation ranging from 4.4 to 72.8% were detected under non-stress and drought stress conditions across two locations. Consistent QTLs for phenology and production traits were detected across experiments and water regimes. The QTL region, RM204-RM197-RM217 on chromosome 6 was linked to days to 50% flowering and grain yield per plant under both rainfed and irrigated conditions. The same genomic region, RM585-RM204-RM197 was also linked to harvest index under rainfed condition with positive alleles from Norungan, a local landrace. QTLs for plant production and drought resistance traits co-located near RM585-RM204-RM197-RM217 region on chromosome 6 in several rice genotypes. Thus with further fine mapping, this region may be useful as a candidate QTL for MAB, map-based cloning of genes and functional genomics studies for rainfed rice improvement.  相似文献   

18.
A doubled haploid population derived from anther culture of ZYQ8/JX17 F1, a typical indica and japonica hybrid, was used in this study. Morphological index and its related taxonomic traits were investigated in 121 DH lines. The quantitative trait loci (QTLs) for morphological index and its related taxonomic traits were analyzed. Two major QTLs for leaf hairiness, three QTLs for length/width of grain, one QTL for color of hull when heading, one QTL for hairiness of hull, two QTLs for length of the first and second panicle internode, and one major QTL and two QTLs for phenol reaction were detected. Four QTLs for morphological index were also identified on chromosomes 1, 3, 4 and 6, respectively, three of which on chromosomes 1, 3 and 6, respectively, were found to be located in the same chromosome regions where some QTLs for the related taxonomic traits were located.  相似文献   

19.
 Lodging can strongly affect both the grain yield and the quality of wheat. Lodging represents a quantitative trait and is difficult to assess on a phenotypic basis. Marker-assisted selection (MAS) could therefore become an important tool in breeding for lodging resistance. In this study, we mapped and characterised quantitative trait loci (QTLs) for lodging resistance, as well as morphological traits correlated with lodging, in a segregating population of 226 recombinant inbred lines derived from the cross of the lodging-resistant wheat variety Forno with the susceptible spelt variety Oberkulmer. Lodging, plant height, leaf width, leaf-growth habit, culm stiffness, culm swinging, culm thickness, days to ear emergence and days to flowering were assessed in field trials at two locations in 1996 and at one location in 1997. Additionally, at one location weight and length parameters were also assessed. Plant height and culm stiffness explained 77% of the phenotypic variance of lodging in a multiple regression model over all three environments. QTL analysis of lodging and morphological parameters was based on a genetic map containing 230 loci with 23 linkage groups (2469 cM). With the method of composite interval mapping nine QTLs for lodging resistance were detected, explaining 63% of the phenotypic variance in a simultaneous fit. Seven of these QTLs coincided with QTLs for morphological traits, reflecting the correlations between these traits and lodging. In our population the most efficient way to improve lodging resistance would be by a combination of indirect selection on plant height and culm stiffness together with MAS on the two QTLs for lodging resistance which did not coincide with QTLs for morphological traits. Received: 3 August 1998 / Accepted: 28 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号