首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人体内脏器官在位置及形态上呈左右不对称分布。纤毛在左右不对称发育中发挥关键作用。目前已鉴定数十个不对称发育相关的人类疾病基因,这些基因大多涉及纤毛发生、运动以及Nodal-Pitx2信号传导过程。文中主要介绍了纤毛影响Nodal-Pitx2信号通路导致人体左右不对称发育的过程。此外还简要阐述了纤毛与先天性心脏病的关系以及左右不对称发育人类遗传学研究的最新发现。这些进展将有助于我们深入了解左右不对称发育分子机制以及纤毛与人类疾病的联系。  相似文献   

2.
心脏是脊椎动物发育过程中最早形成的器官之一,心管向右环化打破了左右对称的格局,是左右分化的第一个重要标志.不对称的心管环化和心脏腔室的形态发生是一个相当复杂的过程,人们对其分子机制,特别是心脏定位和不对称发育机理的了解还相当有限.为了探讨心脏的左右不对称发育,重点从形态学和分子水平对近期的研究作了简要的概述.  相似文献   

3.
胡广伟  张珍珍  高焕 《遗传》2021,(2):134-141
两侧对称动物左右体轴建立机制研究是发育生物学领域重要的基础科学问题之一。文昌鱼(amphioxus)由于其特殊的进化地位以及与脊椎动物相似的胚胎发育模式和身体构筑方式,是研究动物左右体轴建立机制的理想模式物种。近年来随着文昌鱼室内全人工繁育技术、高效显微注射技术和基因敲除技术的建立,国内外学者在左右体轴建立机制研究上取得了丰硕的成果。本文从文昌鱼胚胎左右不对称发育特点出发,总结了近期文昌鱼左右体轴建立方面取得的研究进展,并提出了文昌鱼左右体轴调控网络图:纤毛运动导致Hh蛋白在文昌鱼中不对称分布(L相似文献   

4.
左右不对称信号分子Pitx2   总被引:3,自引:0,他引:3       下载免费PDF全文
同型框基因Pitx2在鸡、小鼠和爪蟾胚胎中不对称地表达在左侧板中胚层和衍生器官(如心脏、肠等)中. 转录因子Pitx2看来是Shh和Nodal等信号分子的下游效应子. Pitx2的错误表达足以产生器官逆位和身体旋转逆向,人类若有Pitx2表达缺陷就可能导致Rieger综合征. Pitx2看来是脊椎动物介导左右不对称的关键且保守的信号分子.  相似文献   

5.
无论在无脊椎动物还是脊椎动物中,组成中枢神经系统(CNS)的大多数细胞都是由极性神经祖细胞不对称分裂而来。通过简要综述果蝇(Drosophila melanogaste)成神经母细胞(NB)不对称分裂机制,并与近年来在脊椎动物不对称细胞分裂上取得的研究成果相比较,尝试找出两个系统的相似性和相异性。  相似文献   

6.
不对称细胞分裂是果蝇等无脊椎动物以及脊椎动物神经发生过程中神经干细胞分化的基本机制.命运决定子的极性定位及其选择性分配,作为不对称细胞分裂中的重要环节,在子细胞命运决定方面发挥至关重要的作用.本文综述了在中枢及外周神经系统发育期间,不对称分裂中调节Numb等命运决定子靶向定位的影响因素及命运决定子的效应机制,并简要探讨命运决定子调节机制的进化保守性.  相似文献   

7.
成纤维细胞生长因子8 (fibroblast growth factor 8,FGF8)是成纤维细胞生长因子家族的成员之一,是一种组织发育过程中的重要分泌性调控信号分子,参与脊椎动物的多种组织器官的发生与发育.早期胚胎细胞通过表达FGF8在组织和器官发育、血管发生、血细胞生成、附肢发生和伤口愈合等方面发挥着重要作用.FGF8不但可以在细胞外通过胞内信号通路,而且也可以进入细胞内部发挥生物学功能.本文就FGF8在脊椎动物神经系统、内脏器官、肢体发育及不对称发育等组织、器官发育中的调控作用予以阐述.  相似文献   

8.
纤毛是以微管为核心组分、突出于细胞表面且高度保守的细胞器,具有运动、摄食、感知并传递外界信号等功能。纤毛发生是纤毛在细胞膜表面定位并装配的过程。多年来,对纤毛发生过程及其调控机制的探索始终是亚细胞结构与功能研究的热点之一。Wnt/PCP信号通路是参与胚胎及器官发育的主要信号转导途径之一。近年来大量研究显示,Wnt/PCP信号通路和纤毛发生密切相关。纤毛结构与功能的异常可造成Wnt/PCP信号通路异常,导致纤毛相关疾病的发生;同时,Wnt/PCP信号通路又决定着纤毛的形态和极性。因此,深入研究纤毛与Wnt/PCP信号通路的关系将有助于从细胞与分子生物学水平揭示纤毛发生的调控机制。  相似文献   

9.
曹莎莎  贾文双  赵庆顺 《遗传》2012,34(9):1159-1164
视黄酸(RA)在脊椎动物胚胎发生过程中发挥着关键作用。但是脊椎动物不能从头合成RA, 而必须以维生素A为前体通过视黄醇脱氢酶和视黄醛脱氢酶(Aldh1A)先将其氧化为视黄醛再氧化成RA。已知维生素A缺乏(VAD)会导致多种动物出现维生素A缺乏综合征, 但有关VAD对斑马鱼胚胎发育的影响尚未见报道。文章通过用不含维生素A及其他视黄类前体的饲料饲喂斑马鱼获得斑马鱼VAD胚胎。分析表明, 缺乏维生素A可导致斑马鱼胚胎体节出现不对称发育、胚胎的后脑图式形成异常。这些表型虽与aldh1a2基因敲落的及经醛脱氢酶抑制剂处理的斑马鱼胚胎表型类似, 但远不及后二者的严重, 提示VAD胚胎可能只是缺少而不是完全没有维生素A, 且可能存在不依赖视黄醛脱氢酶的RA合成途径。  相似文献   

10.
亚历山大·奥努夫里耶维奇·柯瓦列夫斯基(1840—1901),是十九世纪俄国生物学家,进化论比较胚胎学的开创人。他和梅契尼科夫合作,采用比较的方法,在世界上首次广泛研究无脊椎动物的胚胎发育。证明无脊椎动物与脊椎动物都有相似的胚层,各胚层发育而成的组织、器官也基本相似,建立了胚层学说,肯定了无脊椎动物与脊椎动物的亲缘关系。他还对多种脊索动物的个体发育进行了精深的研究。关于文昌鱼研究的科学记载也是他在《蛞蝓鱼的发育》一文中,首先指出了文昌鱼发育过程中的双重性。在胚胎发育上,像脊椎动物的胚胎通过相似阶段而发育;但在早期又…  相似文献   

11.
Wnt信号通路在脊椎动物的胚胎发育过程中发挥重要作用. Dkk1(Dickkopf1)是Dkk基因家族的成员之一,通过编码一种分泌型的糖蛋白与Wnt信号蛋白竞争细胞表面受体,来维持Wnt信号通路的稳态,从而调控胚胎器官的正常发育. 同时,在人类成体中,Dkk1基因活性的改变与肿瘤、代谢性骨病和骨关节炎等疾病的发生密切相关. 本文对Dkk1在头部、肢、眼和牙齿等器官的胚胎发育过程中的相关分子调控机制以及Dkk1与肿瘤发生的关系进行综述.  相似文献   

12.
脊椎动物胚胎发育起始于体轴的建立,是胚胎早期发育过程中最重要的事件之一。Wnt、BMP、Nodal和FGF等多个信号通路协同调控细胞分化和细胞运动,促进胚胎胚层的形成和空间上的分离,调控胚胎背腹轴、前后轴和左右轴线的分化,为胚胎进一步发育勾勒出蓝图。本文主要综述斑马鱼胚胎背腹轴建立的分子机制,包括背部组织中心简介;母源Wnt/β-catenin信号调控背部组织中心形成的分子机制;BMP信号调控背腹轴建立的分子机制。  相似文献   

13.
花对称性的研究进展   总被引:1,自引:0,他引:1  
花对称性(floral symmetry)是被子植物花部结构的典型特性之一,主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称,而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新,被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段,随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明,在传粉过程的不同阶段,花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花,两侧对称的花提高了特异性传粉者的选择作用,增加了花粉落置的精确性,进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明,CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源,与其他花部构成之间是否协同作用,一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。  相似文献   

14.
王琳  梁旭方  廖婉琴  周天鸿 《遗传》2006,28(8):1009-1014
细胞凋亡是细胞在基因调控下发生的主动消亡过程,在脊椎动物胚胎发育过程中非常重要。斑马鱼作为一种十分理想的发育分子生物学研究模型,在有关细胞凋亡在诸如形态发生、性别分化等方面功能之活体在位研究中日益受到重视。目前,斑马鱼胚胎发育中主要凋亡通路研究已进行了不少工作,特别是caspase及其它凋亡调控基因在斑马鱼中已被成功克隆,通过转基因斑马鱼胚胎中胁迫诱导细胞凋亡并研究其信号通路以及斑马鱼胚胎形态发生的异常改变,为阐明这些凋亡调控基因与发育之间的关系提供了一个强有力的手段。  相似文献   

15.
表观遗传信息DNA甲基化在动物的发育、细胞分化和器官形成过程中,起着至关重要的作用.近期,关于DNA甲基化在脊椎动物胚胎发育和生殖细胞发育过程重编程的研究取得了重要的进展.发现斑马鱼的早期胚胎完整地继承了精子的DNA甲基化图谱,而哺乳动物的早期胚胎和原始生殖细胞发育过程则经历了整体去甲基化并重新建立甲基化图谱的过程,但胚胎发育过程中基因的印迹区未发生DNA去甲基化,而生殖细胞发育过程中印迹区的甲基化修饰被消除.  相似文献   

16.
在脊椎动物中,甲状腺激素信号通路是调控生长、发育和机体能量代谢必不可少的信号通路之一,并且参与了两栖类和鱼类的变态反应。近来,越来越多的证据表明,在海洋无脊椎动物中存在内源性的甲状腺激素、甲状腺激素受体等信号通路的成员分子,而且这些分子参与了海洋无脊椎动物的发育和变态过程。这表明在海洋无脊椎动物中存在与脊椎动物类似的甲状腺激素信号通路。综述了海洋无脊椎动物中甲状腺激素信号通路的相关研究进展,旨在为研究甲状腺激素在海洋无脊椎动物的生物学功能及其作用机制提供基础资料。  相似文献   

17.
诱导心脏发生的早期信号通路   总被引:2,自引:0,他引:2  
心脏是胚胎发生过程中最早形成的器官 .心脏前体的特化是组织间及细胞与细胞之间相互作用的结果 ,这一过程包含了诱导信号作用的时间和空间完整程序 .以脊椎动物和无脊椎动物作为模式动物 ,总结了在早期心脏发生中发挥重要作用的诱导信号通路 :BMP Dpp ,Wnt Wingless ,FGF及Notch信号通路 ,并阐述了信号通路之间的通讯 (crosstalk)以及信号通路与心脏发生相关的关键转录调节因子之间的协同诱导作用 .  相似文献   

18.
表观遗传信息DNA甲基化在动物的发育、细胞分化和器官形成过程中,起着至关重要的作用.近期,关于DNA甲基化在脊椎动物胚胎发育和生殖细胞发育过程重编程的研究取得了重要的进展.发现斑马鱼的早期胚胎完整地继承了精子的DNA甲基化图谱,而哺乳动物的早期胚胎和原始生殖细胞发育过程则经历了整体去甲基化并重新建立甲基化图谱的过程,但胚胎发育过程中基因的印迹区未发生DNA去甲基化,而生殖细胞发育过程中印迹区的甲基化修饰被消除.  相似文献   

19.
DNA甲基化与脊椎动物胚胎发育   总被引:1,自引:0,他引:1  
杨晓丹  韩威  刘峰 《遗传》2012,34(9):1108-1113
DNA甲基化是指DNA甲基转移酶(DNMT)将DNA序列中的5′胞嘧啶转变为5′甲基胞嘧啶的化学修饰, 可以调控基因的时空特异性表达, 从而影响细胞命运决定和分化等生物学过程。近年来研究发现, DNA甲基化在脊椎动物胚胎早期发育中有重要作用, Dnmt基因的缺失会影响胚胎早期发育和多个器官的形成及分化, 如胚胎早期致死、内脏器官和神经系统终末分化缺陷以及血液发生紊乱等。文章总结了DNA甲基化转移酶在小鼠和斑马鱼发育过程中的动态变化, 并系统阐述了DNA甲基化在胚胎早期发育和器官发生中的作用, 重点揭示DNA 甲基化转移酶与组蛋白甲基化转移酶如何协同调控DNA甲基化从而影响基因转录的分子机理。DNA甲基化作为一种关键的表观遗传学因素, 全面系统地理解其在胚胎发育过程中的作用机制对靶向治疗人类相关疾病有一定的理论指导意义。  相似文献   

20.
动物胚胎发育讲座(二):文昌鱼的胚胎发生   总被引:3,自引:0,他引:3  
张天荫 《生物学通报》1994,29(8):25-27,40
动物胚胎发育讲座(二)──文昌鱼的胚胎发生张天荫(山东大学生物学系济南250100)从无脊椎动物进化到脊椎动物的过程中,文昌鱼具有重要的位置,其成体结构和胚胎发生与无脊椎动物(如棘皮动物)有许多相似之处:如表皮为单层上皮,其外有角质层,结缔组织不发达...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号