首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background  

The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis.  相似文献   

3.
Nucleotide-binding site (NBS)-encoding resistance genes are key plant disease-resistance genes and are abundant in plant genomes, comprising up to 2% of all genes. The availability of genome sequences from several plant models enables the identification and cloning of NBS-encoding genes from closely related species based on a comparative genomics approach. In this study, we used the genome sequence of Brassica rapa to identify NBS-encoding genes in the Brassica genome. We identified 92 non-redundant NBS-encoding genes [30 CC-NBS-LRR (CNL) and 62 TIR-NBS-LRR (TNL) genes] in approximately 100 Mbp of B. rapa euchromatic genome sequence. Despite the fact that B. rapa has a significantly larger genome than Arabidopsis thaliana due to a recent whole genome triplication event after speciation, B. rapa contains relatively small number of NBS-encoding genes compared to A. thaliana, presumably because of deletion of redundant genes related to genome diploidization. Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes. Recent tandem duplication and ectopic deletion are likely to have played a role in the generation of novel Brassica lineage-specific resistance genes.  相似文献   

4.
Nucleotide-binding site (NBS) disease resistance genes play an important role in defending plants from a range of pathogens and insect pests. Consequently, NBS-encoding genes have been the focus of a number of recent studies in molecular disease resistance breeding programs. However, little is known about NBS-encoding genes in Lotus japonicus. In this study, a full set of disease resistance (R) candidate genes encoding NBS from the complete genome of L. japonicus was identified and characterized using structural diversity, chromosomal locations, conserved protein motifs, gene duplications, and phylogenetic relationships. Distinguished by N-terminal motifs and leucine-rich repeat motifs (LRRs), 92 regular NBS genes of 158 NBS-coding sequences were classified into seven types: CC-NBS-LRR, TIR-NBS-LRR, NBS-LRR, CC-NBS, TIR-NBS, NBS, and NBS-TIR. Phylogenetic reconstruction of NBS-coding sequences revealed many NBS gene lineages, dissimilar from results for Arabidopsis but similar to results from research on rice. Conserved motif structures were also analyzed to clarify their distribution in NBS-encoding gene sequences. Moreover, analysis of the physical locations and duplications of NBS genes showed that gene duplication events of disease resistance genes were lower in L. japonicus than in rice and Arabidopsis, which may contribute to the relatively fewer NBS genes in L. japonicus. Sixty-three NBS-encoding genes with clear conserved domain character were selected to check their gene expression levels by semi-quantitative RT-PCR. The results indicated that 53 of the genes were most likely to be acting as the active genes, and exogenous application of salicylic acid improved expression of most of the R genes.  相似文献   

5.
Genomic in situ hybridization offers a powerful tool for investigating genome organisation and evolution of taxa known, or suspected, to be allopolyploids. The question of the diploid progenitors of cultivated peanut (Arachis hypogaea, 2n=4x=40) has been the subject of numerous studies at cytogenetical, cytochemical, biochemical and molecular levels, but no definitive conclusions have been reached. The biotinylated total genomic DNA from potential diploidArachis species were separately hybridized in situ to root tip chromosomes ofA. hypogaea and wild speciesA. monticola (2n=4x=40) without or mixed with an excess of unlabelled DNA from the species not used as a probe. Among the range of different species combinations used, the strong and uniform signals given by labelledA. ipaensis DNA when hybridized toA. hypogaea andA. monticola in combination with unlabelledA. villosa DNA indicates that overall molecular composition of twenty chromosomes ofA. hypogaea andA. monticola is very similar toA. ipaensis chromosomes. ProbingA. hypogaea andA. monticola chromosomes with labelled genomic DNA fromA. villosa mixed with unlabelled DNA fromA. ipaensis likewise labelled strongly and uniformly the other twenty chromosomes. BarringA. ipaensis, all the diploidArachis species presently investigated had characteristic centromeric bands in the twenty chromosomes within the complement indicating a clear division ofA. ipaensis from other species. InA. hypogaea andA. monticola only twenty chromosomes showed centromeric bands. These results (i) confirm the allopolyploid nature ofA. hypogaea andA. monticola, (ii) strongly support the view that wildA. monticola and cultivatedA. hypogaea are very closely related, and (iii) indicate thatA. villosa andA. ipaensis are the diploid wild progenitors of the tetraploid species studied. The present results also reveal that the nucleolus organizing region (NOR) originating fromA. villosa alone is expressed in the two tetraploid species.  相似文献   

6.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.

Background  

The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species.  相似文献   

8.
Twenty-six accessions of wildArachis species and domesticated peanuts,A. hypogaea, introduced from South America were analyzed for random amplified polymorphic DNA (RAPD). The objective of the study was to investigate inter- and intraspecific variation and affinities among species of sect.Arachis which have been proposed as possible progenitors for the domesticated peanut. Ten primers resolved 132 DNA bands which were useful for separating species and accessions. The most variation was observed among accessions ofA. cardenasii andA. glandulifera whereas the least amount of variation was observed inA. hypogaea andA. monticola. The two tetraploid species could not be separated by using RAPDs.Arachis duranensis was most closely related to the domesticated peanut and is believed to be the donor of the A genome. The data indicated thatA. batizocoi, a species previously hypothesized to contribute the B genome toA. hypogaea, was not involved in its evolution. The investigation showed that RAPDs can be used to analyze both inter- and intraspecific variation in peanut species. Southern hybridization of RAPD probes to blots containing RAPD of theArachis species provided information on genomic relationships and revealed the repetitive nature of the amplified DNA.  相似文献   

9.
Organization and evolution of resistance gene analogs in peanut   总被引:4,自引:0,他引:4  
The scarcity of genetic polymorphism in Arachis hypogaea (peanut), as in other monophyletic polyploid species, makes it especially vulnerable to nematode, bacterial, fungal, and viral pathogens. Although no disease resistance genes have been cloned from peanut itself, the conserved motifs in cloned resistance genes from other plant species provide a means to isolate and analyze similar genes from peanut. To survey the number, diversity, evolutionary history, and genomic organization of resistance gene-like sequences in peanut, we isolated 234 resistance gene analogs (RGAs) by using primers designed from conserved regions of different classes of resistance genes including NBS-LRR, and LRR-TM classes. Phylogenetic and sequence analyses were performed to explore evolutionary relationships both among peanut RGAs and with orthologous genes from other plant taxa. Fifty-six overgos designed from the RGA sequences on the basis of their phyletic association were applied to a peanut BAC library; 736 hybridizing BAC clones were fingerprinted and contigs were formed in order to gain insights into the genomic organization of these genes. All the fingerprinting gels were blotted and screened with the respective overgos in order to verify the authenticity of the hits from initial screens, and to explore the physical organization of these genes in terms of both copy number and distribution in the genome. As a result, we identified 250 putative resistance gene loci. A correlation was found between the phyletic positions of the sequences and their physical locations. The BACs isolated here will serve as a valuable resource for future applications, such as map-based cloning, and will help improve our understanding of the evolution and organization of these genes in the peanut genome. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

10.
Apyrases have been suggested to play important roles in plant nutrition, photomorphogenesis, and nodulation. To help trace the evolution of these genes in the legumes—and possibly, the acquisition of new functions for nodulation—apyrase-containing BACs were sequenced from three legume genomes. Genomic sequences from Medicago truncatula, Glycine max and Lotus japonicus were compared to one another and to corresponding regions in Arabidopsis thaliana. A phylogenetic analysis of apyrase homologs from these regions and sequences from other legume species, as well as other plant families, identified a potentially legume-specific clade that contains a well-characterized soybean ( G. soja) apyrase, Gs52, as well as homologs from Dolichos, Lotus , Medicago and Pisum. Sister clades contain homologs from members of Brassicaceae, Solanaceae, Poaceae and Fabaceae. Comparisons of rates of change at synonymous and nonsynonymous sites in the Gs52 and sister clades show rapid evolution in the potentially legume-specific Gs52 clade. The genomic organization of the apyrase-containing BACs shows evidence of gene duplication, genomic rearrangement, and gene conversion among Gs52 homologs. Taken together, these results suggest a scenario of local apyrase gene duplication in an ancestor of the legumes, followed by functional diversification and increased rates of change in the new genes, and further duplications in the Galegae (which include the genera Medicago and Pisum). The study also provides a detailed comparison of genomic regions between two model genomes which are now being sequenced ( M. truncatula and L. japonicus), and a genome from an economically important legume species ( G. max).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by A. Kondorosi  相似文献   

11.
Liao PC  Lin KH  Ko CL  Hwang SY 《Genetica》2011,139(10):1229-1240
Nucleotide-binding site-leucine-rich repeats (NBS-LRR) gene families are one of the major plant resistance genes. Genomic NBS evolution was studied in many plant species for diverse arrays of NBS gene families. In this study, we focused on one family of NBS sequences in an attempt to understand how closely related NBS sequences evolved in the light of selection in domesticated plant species. A phylogenetic analysis revealed five major clades (A–E) and five subclades (A1–A5) within clade A of cloned NBS sequences. Positive selection was only detected in newly evolved NBS lineages in subclades of clade A. Positively selected codon sites were found among NBS sequences of clade A. A sliding-window analysis revealed that regions with Ka/Ks ratios of >1 were in the inter-motifs when paired clades were compared, but regions with Ka/Ks ratios of >1 were found across NBS sequences when subclades of clade A were compared. Our results based on a family of closely related NBS sequences showed that positive selection was first exerted on specific lineages across all NBS sequences after selective constraints. Subsequently, sequences with mutations in commonly conserved motifs were scrutinized by purifying selection. In the long term, conserved high frequency alleles in commonly conserved motifs and changes in inter-motifs were maintained in the investigated family of NBS sequences. Moreover, codons identified to be under positive selection in the inter-motifs were mainly located in regions involved in functions of ATP binding or hydrolysis.  相似文献   

12.

Background

Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.

Results

In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.

Conclusion

Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.  相似文献   

13.
Arachis hypogaea is an allotetraploid species with low genetic variability. Its closest relatives, all of the genus Arachis, are important sources of alleles for peanut breeding. However, a better understanding of the genome constitution of the species and of the relationships among taxa is needed for the effective use of the secondary gene pool of Arachis. In the present work, we focused on all 11 non-A genome (or B genome sensu lato) species of Arachis recognized so far. Detailed karyotypes were developed by heterochromatin detection and mapping of the 5S and the 18S–25S rRNA using FISH. On the basis of outstanding differences observed in the karyotype structures, we propose segregating the non-A genome taxa into three genomes: B sensu stricto (s.s.), F and K. The B genome s.s. is deprived of centromeric heterochromatin and is homologous to one of the A. hypogaea complements. The other two genomes have centromeric bands on most of the chromosomes, but differ in the amount and distribution of heterochromatin. This organization is supported by previously published data on molecular markers, cross compatibility assays and bivalent formation at meiosis in interspecific hybrids. The geographic structure of the karyotype variability observed also reflects that each genome group may constitute lineages that have evolved through independent evolutionary pathways. In the present study, we confirmed that Arachis ipaensis was the most probable B genome donor for A. hypogaea, and we identified a group of other closely related species. The data provided here will facilitate the identification of the most suitable species for the development of prebreeding materials for further improvement of cultivated peanut.  相似文献   

14.
Degenerate oligonucleotide primers, designed based on conserved regions of Nucleotide Binding Site (NBS) domains from previously cloned plant resistance genes, were used to isolate Resistance Gene Analogues (RGAs) from wild and cultivated strawberries. Seven distinct families of RGAs of the NBS-LRR type were identified from two related wild species, Fragaria vesca and F. chiloensis, and six different Fragaria × ananassa cultivars. With one exception (GAV-3), the deduced amino acid sequences of strawberry RGAs showed strong similarity to TIR (Toll Interleukin I Receptor)-type R genes from Arabidopsis, tobacco and flax, suggesting the existence of common ancestors. GAV-3 seemed to be more closely related to the non-TIR type. Further studies showed that the recombination level and the ratio of non-synonymous to synonymous substitutions within families were low. These data suggest that NBS-encoding sequences of RGAs in strawberry are subject to a gradual accumulation of mutations leading to purifying selection, rather than to a diversifying process. The present paper is the first report on RGAs in strawberry.Communicated by M.-A. Grandbastien  相似文献   

15.
Chromosome pairing, pollen and pod fertility in hybrids between cultivated tetraploidArachis hypogaea and 15 synthetic amphidiploids from 8 diploid species (7 of the A genome and 1 of the B genome) of sect.Arachis have been utilized for the identification of putative genome donors in the evolution of cultivatedA. hypogaea. These results, in conjunction with evidence from morphological similarities, phytogeographical distribution and some phytochemical features, confirm the segmental amphidiploid origin ofA. hypogaea. A. batizocoi andA. duranensis are suggested as the donors of the B genome and the A genome respectively.  相似文献   

16.
Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)-independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF-containing bradyrhizobial strains – SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains – BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour an NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as an NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis.  相似文献   

17.
A recent approach to detecting genetic polymorphism involves the amplification of genomic DNA using single primers of arbitrary sequence. When separated electrophoretically in agarose gels, the amplification products give banding patterns that can be scored for genetic variation. The objective of this research was to apply these techniques to cultivated peanut (Arachis hypogaea L.) and related wild species to determine whether such an approach would be feasible for the construction of a genetic linkage map in peanut or for systematic studies of the genus. Two peanut cultivars, 25 unadapted germplasm lines of A. hypogaea, the wild allotetraploid progenitor of cultivated peanut (A. monticola), A. glabrata (a tetraploid species from section Rhizomatosae), and 29 diploid wild species of Arachis were evaluated for variability using primers of arbitrary sequence to amplify segments of genomic DNA. No variation in banding pattern was observed among the cultivars and germplasm lines of A. hypogaea, whereas the wild Arachis species were uniquely identified with most primers tested. Bands were scored (+/–) in the wild species and the PAUP computer program for phylogenetic analysis and the HyperRFLP program for genetic distance analysis were used to generate dendrograms showing genetic relationships among the diploid Arachis species evaluated. The two analyses produced nearly identical dendrograms of species relationships. In addition, approximately 100 F2 progeny from each of two interspecific crosses were evaluated for segregation of banding patterns. Although normal segregation was observed among the F2 progeny from both crosses, banding patterns were quite complex and undesirable for use in genetic mapping. The dominant behavior of the markers prevented the differentiation of heterozygotes from homozygotes with certainty, limiting the usefulness of arbitrary primer amplification products as markers in the construction of a genetic linkage map in peanut.  相似文献   

18.

Background

Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana.

Results

Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species.

Conclusion

This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-3) contains supplementary material, which is available to authorized users.  相似文献   

19.
Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes.  相似文献   

20.
Arachis hypogaea is a widely cultivated crop both as an oilseed and protein source. The genomic analysis of Arachis species hitherto has been limited to the construction of genetic maps; the most comprehensive one contains 370 loci over 2,210 cM in length. However, no attempt has been made to analyze the physical structure of the peanut genome. To investigate the practicality of physical mapping in peanut, we applied a total of 117 oligonucleotide-based probes (overgos) derived from genetically mapped RFLP probes onto peanut BAC filters containing 182,784 peanut large-insert DNA clones in a multiplex experimental design; 91.5% of the overgos identified at least one BAC clone. In order to gain insights into the potential value of Arabidopsis genome sequence for studies in divergent species with complex genomes such as peanut, we employed 576 Arabidopsis-derived overgos selected on the basis of maximum homology to orthologous sequences in other plant taxa to screen the peanut BAC library. A total of 353 (61.3%) overgos detected at least one peanut BAC clone. This experiment represents the first steps toward the creation of a physical map in peanut and illustrates the potential value of leveraging information from distantly related species such as Arabidopsis for both practical applications such as comparative map-based cloning and shedding light on evolutionary relationships. We also evaluated the possible correlation between functional categories of Arabidopsis overgos and their success rates in hybridization to the peanut BAC library.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号