首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genomic in situ hybridization offers a powerful tool for investigating genome organisation and evolution of taxa known, or suspected, to be allopolyploids. The question of the diploid progenitors of cultivated peanut (Arachis hypogaea, 2n=4x=40) has been the subject of numerous studies at cytogenetical, cytochemical, biochemical and molecular levels, but no definitive conclusions have been reached. The biotinylated total genomic DNA from potential diploidArachis species were separately hybridized in situ to root tip chromosomes ofA. hypogaea and wild speciesA. monticola (2n=4x=40) without or mixed with an excess of unlabelled DNA from the species not used as a probe. Among the range of different species combinations used, the strong and uniform signals given by labelledA. ipaensis DNA when hybridized toA. hypogaea andA. monticola in combination with unlabelledA. villosa DNA indicates that overall molecular composition of twenty chromosomes ofA. hypogaea andA. monticola is very similar toA. ipaensis chromosomes. ProbingA. hypogaea andA. monticola chromosomes with labelled genomic DNA fromA. villosa mixed with unlabelled DNA fromA. ipaensis likewise labelled strongly and uniformly the other twenty chromosomes. BarringA. ipaensis, all the diploidArachis species presently investigated had characteristic centromeric bands in the twenty chromosomes within the complement indicating a clear division ofA. ipaensis from other species. InA. hypogaea andA. monticola only twenty chromosomes showed centromeric bands. These results (i) confirm the allopolyploid nature ofA. hypogaea andA. monticola, (ii) strongly support the view that wildA. monticola and cultivatedA. hypogaea are very closely related, and (iii) indicate thatA. villosa andA. ipaensis are the diploid wild progenitors of the tetraploid species studied. The present results also reveal that the nucleolus organizing region (NOR) originating fromA. villosa alone is expressed in the two tetraploid species.  相似文献   

2.
A recent approach to detecting genetic polymorphism involves the amplification of genomic DNA using single primers of arbitrary sequence. When separated electrophoretically in agarose gels, the amplification products give banding patterns that can be scored for genetic variation. The objective of this research was to apply these techniques to cultivated peanut (Arachis hypogaea L.) and related wild species to determine whether such an approach would be feasible for the construction of a genetic linkage map in peanut or for systematic studies of the genus. Two peanut cultivars, 25 unadapted germplasm lines of A. hypogaea, the wild allotetraploid progenitor of cultivated peanut (A. monticola), A. glabrata (a tetraploid species from section Rhizomatosae), and 29 diploid wild species of Arachis were evaluated for variability using primers of arbitrary sequence to amplify segments of genomic DNA. No variation in banding pattern was observed among the cultivars and germplasm lines of A. hypogaea, whereas the wild Arachis species were uniquely identified with most primers tested. Bands were scored (+/–) in the wild species and the PAUP computer program for phylogenetic analysis and the HyperRFLP program for genetic distance analysis were used to generate dendrograms showing genetic relationships among the diploid Arachis species evaluated. The two analyses produced nearly identical dendrograms of species relationships. In addition, approximately 100 F2 progeny from each of two interspecific crosses were evaluated for segregation of banding patterns. Although normal segregation was observed among the F2 progeny from both crosses, banding patterns were quite complex and undesirable for use in genetic mapping. The dominant behavior of the markers prevented the differentiation of heterozygotes from homozygotes with certainty, limiting the usefulness of arbitrary primer amplification products as markers in the construction of a genetic linkage map in peanut.  相似文献   

3.
The genus Arachis contains a large number of species and undescribed taxa with patterns of genetic variation that are little understood. The objectives of this investigation were to estimate genetic diversity among species of Arachis by utilizing electrophoretic techniques and to establish the potential for use of isozymes as markers for germplasm introgression. One-hundred-and-thirteen accessions representing six of the seven sections of the genus were analyzed for isozyme variation of 17 enzymes. Section Rhizomatosae species were not included because they produce very few seeds. Seeds were macerated and the crude extract was used for starch-gel electrophoretic analyses. Although the cultivated species has few polymorphic isozymes, the diploid species are highly variable and two-to-six bands were observed for each isozyme among accessions. Because of the large number of isozyme differences between A. hypogaea and A. batizocoi (the presumed donor of the B genome), this species can no longer be considered as a progenitor of the cultivated peanut. Seed-to-seed polymorphisms within many accessions were also observed which indicate that germplasm should be maintained as bulk seed lots, representative of many individuals, or as lines from individual plants from original field collections. The area of greatest interspecific genetic diversity was in Mato Grosso, Brazil; however, the probability of finding unique alleles from those observed in A. hypogaea was greatest in north, north-central, south and southeast Brazil. The large number of polymorphic loci should be useful as genetic markers for interspecific hybridization studies.  相似文献   

4.

Background  

The genus Arachis is native to a region that includes Central Brazil and neighboring countries. Little is known about the genetic variability of the Brazilian cultivated peanut (Arachis hypogaea, genome AABB) germplasm collection at the DNA level. The understanding of the genetic diversity of cultivated and wild species of peanut (Arachis spp.) is essential to develop strategies of collection, conservation and use of the germplasm in variety development. The identity of the ancestor progenitor species of cultivated peanut has also been of great interest. Several species have been suggested as putative AA and BB genome donors to allotetraploid A. hypogaea. Microsatellite or SSR (Simple Sequence Repeat) markers are co-dominant, multiallelic, and highly polymorphic genetic markers, appropriate for genetic diversity studies. Microsatellite markers may also, to some extent, support phylogenetic inferences. Here we report the use of a set of microsatellite markers, including newly developed ones, for phylogenetic inferences and the analysis of genetic variation of accessions of A. hypogea and its wild relatives.  相似文献   

5.
We evaluated chloroplast DNA (cpDNA), isozymes, single to low-copy nuclear DNA (RFLPs), and random amplified polymorphic DNAs (RAPDs) in terms of concordance for genetic distance of 15 accessions each of Solanum etuberosum and S. palustre, and 4 accessions of S. fernandezianum. These self-compatible, diploid (2n=24), and morphologically very similar taxa constitute all species in Solanum sect. Etuberosum, a group of non-tuber-bearing species closely related to Solanum sect. Petota (the potato and its wild relatives). Genetic distance and multidimentional scaling results show general concordance of isozymes, RFLPs and RAPDs between all three taxa; cpDNA shows S. etuberosum and S. palustre to be more similar to each other than to S. fernandezianum. Interspecific sampling variance shows a gradation of resolution from allozyme (low) to RAPD to RFLP (high); while intraspecific comparisons graded from RFLPs (low) to RAPDs (high; lack of sufficient allozyme variability within species precluded comparisons for allozymes). Experimental error was low in RFLPs and RAPDs.Names are necessary to report factually and available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable  相似文献   

6.
Summary Restriction fragment length polymorphisms (RFLP) were assessed among accessions within six peanut species of the Arachis section: tetraploid cultivated species, A. hypogaea; tetraploid wild species, A. monticola; and four diploid wild species, A. batizocoi,A. cardenasii, A. duranensis and A. glandulifera. While the two tetraploid species did not show polymorphism with 16 PstI-generated random genomic probes, two of seven seed cDNA probes detected polymorphisms. The RFLP variation detected by two seed cDNA probes appeared to be related to structural changes occurring within tetraploid species. The botanical var. fastigiata (Valencia market type) of A. hypogaea subspecies fastigiata was shown to be the most variable. Arachis monticola was found to be more closely related to A. hypogaea subspecies hypogaea than to subspecies fastigiata. Diploid species A. cardenasii, A. duranensis, and A. glandulifera showed considerable intraspecific genetic diversity, but A. batizocoi showed little polymorphism. The genetic distance between the cultivated peanut and wild diploid species was found to be closest for A. duranensis.Florida Agricultural Experiment Station, Journal Series No. R-01493  相似文献   

7.
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.  相似文献   

8.
Nuclear restriction fragment length polymorphism (RFLP) analysis was used to determine the wild diploid Arachis species that hybridized to form tetraploid domesticated peanut. Results using 20 previously mapped cDNA clones strongly indicated A. duranensis as the progenitor of the A genome of domesticated peanut and A. ipaensis as the B genome parent. A large amount of RFLP variability was found among the various accessions of A. duranensis, and accessions most similar to the A genome of cultivated peanut were identified. Chloroplast DNA RFLP analysis determined that A. duranensis was the female parent of the original hybridization event. Domesticated peanut is known to have one genome with a distinctly smaller pair of chromosomes (“A”), and one genome that lacks this pair. Cytogenetic analysis demonstrated that A. duranensis has a pair of “A” chromosomes, and A. ipaensis does not. The cytogenetic evidence is thus consistent with the RFLP evidence concerning the identity of the progenitors. RFLP and cytogenetic evidence indicate a single origin for domesticated peanut in Northern Argentina or Southern Bolivia, followed by diversification under the influence of cultivation.  相似文献   

9.
Arachis hypogaea L., commonly known as the peanut or groundnut, is an important and widespread food legume. Because the crop has a narrow genetic base, genetic diversity in A. hypogaea is low and it lacks sources of resistance to many pests and diseases. In contrast, wild diploid Arachis species are genetically diverse and are rich sources of disease resistance genes. The majority of known plant disease resistance genes encode proteins with a nucleotide binding site domain (NBS). In this study, degenerate PCR primers designed to bind to DNA regions encoding conserved motifs within this domain were used to amplify NBS-encoding regions from Arachis spp. The Arachis spp. used were A. hypogaea var. Tatu and wild species that are known to be sources of disease resistance: A. cardenasii, A. duranensis , A. stenosperma and A. simpsonii. A total of 78 complete NBS-encoding regions were isolated, of which 63 had uninterrupted ORFs. Phylogenetic analysis of the Arachis NBS sequences derived in this study and other NBS sequences from Arabidopsis thaliana, Medicago trunculata , Glycine max , Lotus japonicus and Phaseolus vulgaris that are available in public databases This analysis indicates that most Arachis NBS sequences fall within legume-specific clades, some of which appear to have undergone extensive copy number expansions in the legumes. In addition, NBS motifs from A. thaliana and legumes were characterized. Differences in the TIR and non-TIR motifs were identified. The likely effect of these differences on the amplification of NBS-encoding sequences by PCR is discussed.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Communicated by M.-A. Grandbastien  相似文献   

10.
Random amplified polymorphic DNA (RAPD) was assessed for its suitability as a tool to be used in the identification of taxa from the genusStylosanthes (Fabaceae, Papilionoideae, Aeschynomeneae). Five random primers were used to fingerprint accessions from seven species in the genus, and generated RAPD profiles that were species-specific. Data were used to examine evolutionary relationships between taxa, employing both clustering and ordination techniques, and the results were compared with those from a previous cladistic analysis of chloroplast DNA (cpDNA) restriction fragments. Both multivariate approaches indicated relationships that were generally similar to those obtained by RFLP analysis of cpDNA. However, while cluster analysis grouped together all accessions within species, ordination placed certain accessions ofS. humilis, S. macrocephala andS. capitata into separate groups. Experiments to test the assumed homology of comigrating RAPDs estimated 85.7% homology for accessions within species, and 53.8% homology for accessions between species. The value of RAPD data in systematics is discussed.  相似文献   

11.
Among a total of 43 accessions ofAlstroemeria aurea, A. ligtu andA. magnifica nuclear DNA amounts (2C-values) showed significant intraspecific variation, 1.09, 1.21 and 1.15 fold, respectively, when determined through flow cytometric measurements of fluorescence of propidium iodide (PI) stained nuclei. After staining with another fluorochrome, 4,6-diamidino-2-phenylindole (DAPI), an intraspecific variation of 1.10, 1.11 and 1.12 fold, respectively, was found. C-band polymorphisms were present among and within the accessions of all three species. In some cases only very small differences in C-banding pattern were observed. In other cases, however, differences were more prominent. Besides C-band polymorphism, there were also instances of chromosome length polymorphism, which concerned the total chromosome complement or single chromosomes. The variation in nuclear DNA amount inA. aurea andA. ligtu was more or less continuous, except for one accession ofA. ligtu subsp.simsii. Artificial selection and possibly introgression of chromosomes from other species may have moulded the karyotypes of some of the accessions ofA. aurea, a species that has been under cultivation for more than 160 years. The variation as observed inA. magnifica subsp.magnifica was discontinuous and could be due to a broad species concept.  相似文献   

12.
Summary By using restriction endonuclease digestion patterns, the degree of intraspecific polymorphism of mitochondrial DNA in four diploid species of wheat and Aegilops, Ae. speltoides, Ae. longissima, Ae. squarrosa, and Triticum monococcum, was assessed. The outbreeding Ae. speltoides was found to possess the highest degree of variability, the mean number of nucleotide substitutions among conspecific individuals being 0.027 substitutions per nucleotide site. A very low degree of mtDNA variation was detected among Ae. longissima accessions, with most of the enzyme-probe combinations exhibiting uniform hybridization patterns. The mean number of substitutions among Ae. longissima individuals was 0.001 substitutions per nucleotide site. The domesticated diploid wheat T. monococcum var. monococcum and its conspecific variant T. monococcum var. boeoticum seem to lack mitochondrial DNA variability altogether. Thus, the restriction fragment pattern can be used as a characteristic identifier of the T. monococcum cytoplasmic genome. Similarly, Ae. squarrosa accessions were found to be genetically uniform. A higher degree of variation among accessions is observed when noncoding sequences are used as probes then when adjacent coding regions are used. Thus, while noncoding regions may contain regulatory functions, they are subject to less stringent functional constraints than protein-coding regions. Intraspecific variation in mitochondrial DNA correlates perfectly with the nuclear variability detected by using protein electrophoretic characters. This correlation indicates that both types of variation are selectively neutral and are affected only by the effective population size.  相似文献   

13.
Chromosome pairing, pollen and pod fertility in hybrids between cultivated tetraploidArachis hypogaea and 15 synthetic amphidiploids from 8 diploid species (7 of the A genome and 1 of the B genome) of sect.Arachis have been utilized for the identification of putative genome donors in the evolution of cultivatedA. hypogaea. These results, in conjunction with evidence from morphological similarities, phytogeographical distribution and some phytochemical features, confirm the segmental amphidiploid origin ofA. hypogaea. A. batizocoi andA. duranensis are suggested as the donors of the B genome and the A genome respectively.  相似文献   

14.
Arachis batizocoi Krap. & Greg. is a suggested B genome donor to the cultivated peanut,A. hypogaea L. Until recently, only one accession of this species was available in U.S.A. germplasm collections for analyses and species variability had not been documented. The objective of this study was to determine the intraspecific variability ofA. batizocoi to better understand phylogenetic relationships in sect.Arachis. Five accessions of the species were used for morphological and cytological studies and then F1 intraspecific hybrids analyzed. Some variation was observed among accessions—for example, differences in seed size, plant height and branch length. The somatic chromosomes of accessions 9484, 30079, and 30082 were nearly identical, whereas, the karyotypes of accessions 30081 and 30097 have several distinct differences. For example, 30081 had significantly more asymmetrical chromosomes 2 and 6 and more median chromosomes 7 and 10, and 30097 had significantly more asymmetrical chromosomes 3 and 10 and more median chromosomes 1 and 5 than accessions 9484, 30079, and 30082. All F1 hybrids among accessions were highly fertile. Meiotic observations indicated that hybrids among accessions 9484, 30079, or 30082 had mostly bivalents. However, quadrivalents were observed when either 30081 or 30097 was crossed with the above three accessions and 30081 × 30097 had quadrivalents, hexavalents and octavalents. The presence of translocations is the most likely cause of multivalent formation inA. batizocoi hybrids. Cytological evolution via translocations has apparently been an important mechanism for differentiation in the species.Paper No. 12382 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643.  相似文献   

15.
Variation in high molecular weight (HMW) glutenin subunit composition among wild and cultivated einkorn wheats (2n = 2x = 14, AA) was investigated using one- (SDS-PAGE and urea/SDS-PAGE) and two-dimensional (IEF × SDS-PAGE) electrophoretic analyses. The material comprised 150 accessions ofTriticum urartu, 160 accessions ofT. boeoticum, 24 accessions ofT. boeoticum subsp.thaoudar and 74 accessions of primitive domesticatedT. monococcum from many different germplasm collections. The biochemical characteristics of HMW-glutenin subunits ofT. boeoticum andT. monococcum were highly similar to one another but distinctly different from those ofT. urartu. All the species analysed were characterised by large intraspecific variation and only three HMW-glutenin subunit patterns were identical betweenT. boeoticum andT. monococcum. Consistent with the distinct nature ofT. urartu, all its HMW-glutenin patterns were different from those found inT. boeoticum andT. monococcum. The differences detected between these species might reflect their reproductive isolation and are consistent with recent nomenclatural and biosystematic treatments that recogniseT. urartu as separate species fromT. boeoticum andT. monococcum. The presence of three distinct glutenin components in some accessions of the species studied seems to be evidence for the existence of at least three active genes controlling the synthesis of the HMW-glutenin subunits in the A genome of wild and primitive domesticated diploid wheats. Results indicate also that HMW-glutenin subunits could represent useful markers for the evaluation of genetic variability present in different wild diploid wheat collections and subsequently for their conservation and future utilisation.  相似文献   

16.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

17.
55 accessions of wild peanuts (Arachis spp.) introduced from South America were analyzed for seed storage protein composition using SDS-PAGE electrophoresis. The objectives of the study were to evaluate variability within sect.Arachis and to classify taxa based on protein composition. 25 different band positions were resolved. Individual accessions had 11 to 18 bands which included the conarachin region (MW > 50 kD), two to five bands in the acidic arachin region (MW 38–49.9 kD), three to seven in the intermediate MW region (23 to 37.9 kD), two to five bands in the basic arachin region (18–22.9 kD), and one to three bands in the low MW protein region (14–17.9 kD). These data were utilized in a principal coordinate analysis based on the matrix of genetic distances between all pairs of the 55 accessions. Several groups of accessions conformed to expected species classification includingA. batizocoi, A. stenosperma, andA. monticola; whileA. duranensis, A. cardenasii, A. helodes, andA. correntina did not form good groups. The study showed that great diversity exists for protein profiles and seed storage proteins have potential for aiding species classification and for serving as markers for interspecific hybridization studies.  相似文献   

18.
Section Arachis is the largest of nine sections in the genus Arachis and includes domesticated peanut, A. hypogaea L. Most species are diploids (x=10) with two tetraploids and a few aneuploids. Three genome types have been recognized in this section (A, B and D), but the genomes are not well characterized and relationships of several newly described species are uncertain. To clarify genomic relationships in section Arachis, cytogenetic information and molecular data from amplified fragment length polymorphism (AFLP) and the trnT-F plastid region were used to provide an additional insight into genome composition and species relationships. Cytogenetic information supports earlier observations on genome types of A. cruziana, A. herzogii, A. kempff-mercadoi and A. kuhlmannii but was inconclusive about the genome composition of A. benensis, A. hoehnei, A. ipaensis, A. palustris, A. praecox and A. williamsii. An AFLP dendrogram resolved species into four major clusters and showed A. hypogaea grouping closely with A. ipaensis and A. williamsii. Sequence data of the trnT-F region provided genome-specific information and showed for the first time that the B and D genomes are more closely related to each other than to the A genome. Integration of information from cytogenetics and biparentally and maternally inherited genomic regions show promise in understanding genome types and relationships in Arachis.  相似文献   

19.
Echinochloa (Poaceae) includes two domesticated species,Echinochloa utilis (Japanese barnyard millet) andE. frumentacea (Indian sawa millet) and 20–30 wild species. The two millets are morphologically very variable and overlap in spikelet and inflorescence characteristics. Both species are hexaploids based on x = 9. Cytogenetic studies point to the hexaploid wild speciesE. crusgalli andE. colona as possible progenitors ofE. utilis andE. frumentacea, respectively. The tetraploidE. oryzoides is considered as a possible genome donor to wild and domesticated barnyard millet. Markers from Random Amplified Polymorphic DNA method were used to assess the proposed phylogeny and examine the genetic diversity in both domesticated and wild species. The data were analyzed numerically.Echinochloa utilis andE. frumentacea appear very distinct, but grouped withE. crusgalli andE. colona, respectively. The tetraploidE. oryzoides show strong genetic affinity to theE. utilis—E. crusgalli group. The data are in general agreement with the cytogenetic information; however, some disagreements on the interpretation of some of the cytogenetic information is raised. The variability in DNA markers observed in the domesticated species, particularlyE. frumentacea, points to the feasibility of using RAPD markers in cultivar fingerprinting and breeding programs of these millets.  相似文献   

20.
Summary Arachis hypogaea (peanut or groundnut) is an AABB allotetraploid whose precise ancestry is not yet clear. Its closest diploid relatives are the annual and perennial wild species included with it in the section Arachis. Variation in these species for 11 different enzymes was studied by starch-gel electrophoresis. Differences attributed to at least 13 genetic loci were found among eight enzymes, while three enzymes appeared uniform throughout the section. Values for Nei's genetic distance were calculated for all pairs of species and were used to estimate relationships. All diploid species, apart from two whose validity had previously been questioned, could be distinguished by their overall zymotypes, but few contained unique alleles. When species were grouped by their mean genetic distances, they formed two clusters, which agreed reasonably well with the division of the section into annual versus perennial species. The single B-genome species was an outlier within the annual group. A. hypogaea showed fixed heterozygosity at four loci (in ssp. hypogaea) or six loci (in ssp. fastigiata), which agrees with previous conclusions that the peanut is an allotetraploid. None of the diploids included in this survey could be conclusively identified as donors of either the A or the B genome to the tetraploids. The two subspecies of A. hypogaea differed consistently in two of the thirteen putative loci studied. This may call into question the simple hypothesis that A. hypogaea originated from just two diploid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号