首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 161 毫秒
1.
气候变暖下水圈甲烷排放及其微生物学机制   总被引:1,自引:0,他引:1  
聂明 《微生物学报》2020,60(9):1821-1833
大气温室气体浓度升高导致的气候变暖已对人类社会可持续发展带来了严重影响。水圈生态系统既是全球最为重要的碳汇之一,也是全球最为重要的甲烷自然排放源。因此,阐明气候变暖背景下水圈甲烷排放格局及其相关微生物调控机制,是认识未来地球气候系统演变机理、预测未来全球变化潜在情景的关键命题,也将为如何高效发挥水圈碳汇潜力提供基础理论支撑,更好应对全球气候变化问题。本文主要综述了气候变暖背景下主要水圈生态系统中微生物介导的甲烷排放研究的现状与趋势,介绍了水圈甲烷排放格局及其气候变暖背景下的演变趋势,回顾了气候变暖对甲烷代谢相关微生物群落与功能的复杂调控作用。基于目前的研究现状,未来亟需通过微观机制与宏观过程相结合的途径,并基于生态系统复杂性和气候变暖长期性开展相关研究。同时,建议应加强对海洋等相对薄弱区域的研究。  相似文献   

2.
长期施肥对双季稻田甲烷排放和关键功能微生物的影响   总被引:3,自引:0,他引:3  
研究不同施肥措施对双季稻田甲烷(CH_4)排放特征的影响及其微生物学机理,对合理利用及评价不同施肥模式对水稻生长的影响具有重要意义。以长期施肥定位试验田为平台,采用静态箱-气相色谱法对施用化肥(MF:mineral fertilizer alone)、秸秆还田配施化肥(RF:rice residues plus mineral fertilizer)、30%有机肥配施70%化肥(LOM:30%organic matter plus 70%mineral fertilizer)、60%有机肥配施40%化肥(HOM:60%organic matter plus 40%mineral fertilizer)和无肥(CK:without fertilizer)条件下双季稻田CH_4排放及其微生物学机理进行了分析。结果表明,早稻和晚稻生长期,不同施肥处理稻田CH_4排放通量均显著高于CK,表现为HOMLOMRFMFCK。各处理间CH_4总排放量差异达显著水平,其大小顺序与排放通量趋势一致,以HOM处理为最高,比CK处理增加105.56%,其次是LOM和RF处理,分别比CK处理增加72.97%和54.17%。关键功能土壤微生物测定结果表明,早稻和晚稻各个主要生育时期,各处理稻田土壤产甲烷古菌的数量变化范围为(3.18—81.07)×10~3cfu/g,土壤甲烷氧化细菌的数量变化范围为(24.82—379.72)×10~3cfu/g。稻田土壤产甲烷古菌和甲烷氧化细菌数量大小顺序为HOMLOMRFMFCK,各施肥处理均显著高于CK;HOM、LOM、RF处理显著高于MF、CK处理。双季稻田CH_4排放与稻田土壤产甲烷古菌、甲烷氧化细菌数量变化关系密切。采用有机无机肥配施促进了双季稻田生态系统CH_4的排放和关键功能微生物的数量。  相似文献   

3.
张贤  朱求安  杨斌  王洁仪  陈槐  彭长辉 《生态学报》2020,40(9):3060-3071
甲烷(CH_4)是大气中最丰富的碳氢化合物,是仅次于二氧化碳(CO_2)的温室气体。湿地是甲烷的重要来源,在全球碳循环中发挥着重要作用,其排放的甲烷占所有天然甲烷排放源的70%,占全球甲烷排放总量的24.8%。青藏高原平均海拔4000 m以上,占有中国约三分之一的湿地。近几十年来,由于全球气候变暖和降水增加,该地区甲烷排放率和湿地面积都发生着巨大变化,因此,青藏高原湿地CH_4排放的长期变化在很大程度上仍存在较大的不确定性。利用TRIPLEX-GHG模型模拟了青藏高原湿地1978—2008年CH_4排放的动态特征,研究结果表明:(1)1978—2008年青藏高原湿地CH_4排放速率呈逐渐增加趋势。(2)青藏高原大多数湿地区域CH_4排放速率为0—6.13 g CH_4 m~(-2 )a~(-1);东北部分湿地区域CH_4排放速率为6.14—20.19 g CH_4 m~(-2 )a~(-1);较高的CH_4排放速率分布于青藏高原南部湿地区域,为56.14—74.97 g CH_4 m~(-2 )a~(-1)。(3)青藏高原湿地CH_4排放量在1978、1990、2000年和2008年分别为0.21、0.23、0.27和0.32 Tg CH_4 a~(-1)。在1978—1990年,尽管CH_4排放速率增加,但湿地面积减少,因此这一时期青藏高原湿地CH_4排放量并未发生明显变化。随后由于降水增加和冰川融化,使得湿地面积逐渐增加,青藏高原湿地CH_4排放量也呈现增加趋势。  相似文献   

4.
张强  蒋国庆  孙睿  徐自为  刘绍民 《生态学报》2017,37(17):5681-5690
于2012年7月—2014年6月对地处干旱区的张掖湿地甲烷(CH_4)通量进行观测,分析其CH_4通量的变化特征及其影响因子。结果表明:CH_4通量的日变化趋势总体表现为白天大于夜间;不同季节CH_4通量排放特征差异明显,夏季最大,春秋次之,冬季最小;CH_4通量日总量与空气温度、土壤温度之间指数相关关系显著,其中4 cm处土壤温度与之相关性最强;1—6月摩擦风速(U*)与CH_4通量显著正相关;结合CO_2通量观测数据,研究时段张掖湿地净碳吸收量为495.92 g C m~(-2)a~(-1),为明显碳汇。  相似文献   

5.
冻土甲烷循环微生物群落及其对全球变化的响应   总被引:2,自引:0,他引:2  
冻土是陆地生态系统中最容易受到全球气候变化影响的碳库,既发挥着碳源又起着碳汇的作用。人们非常关注贮存于冻土中有机碳的最终归宿,是因为全球气候变暖会加快冻土的解冻,释放更多的温室气体(二氧化碳和甲烷)到大气中,从而进一步加剧温室效应。据估计每年从北半球冻原陆地生态系统释放进入大气的甲烷约占全球自然界释放甲烷总量的25%。研究证实冻土生物源甲烷的产生和消耗分别由耐(嗜)低温的产甲烷菌(methanogens)和甲烷氧化菌(methanotrophs)介导。鉴于冻土甲烷循环对全球甲烷平衡的显著作用以及在冻土生物地球化学循环中的重要功能,对介导冻土甲烷循环的产甲烷菌和甲烷氧化菌的研究将有助于更好地评估冻土生态系统对全球气候变化的响应和影响,本文就冻土甲烷循环过程、产甲烷菌、甲烷氧化菌的群落结构、活动、生态功能及其对气候和环境变化的响应机制的最新研究进行综述,以期为我国开展冻土甲烷循环机理研究提供支持。  相似文献   

6.
滨海湿地位于海陆交界,具有初级生产力高、生物多样性丰富以及微生物驱动的营养元素循环活跃等特点,同时也是大气中一氧化二氮(N_2O)的重要排放源。N_2O是仅次于二氧化碳(CO2)和甲烷(CH4)的第三大温室气体,而全球90%以上的N_2O排放由微生物主导,并与滨海湿地氮循环的微生物群落多样性及功能密切相关。因此,滨海湿地系统中N_2O的产生与转化逐渐受到关注。本文综述了滨海湿地生态系统中微生物驱动下N_2O的产生过程,以及氮元素及其与碳、硫和金属元素耦合过程中产生N_2O的代谢途径,N_2O排放的时空变化与微生物调控,并对未来相关研究方向进行了展望,旨在揭示微生物驱动的N_2O产生及环境调控机制,为减缓全球变暖提供科学依据。  相似文献   

7.
自然湿地土壤产甲烷菌和甲烷氧化菌多样性的分子检测   总被引:3,自引:0,他引:3  
佘晨兴  仝川 《生态学报》2011,31(14):4126-4135
自然湿地是CH4排放的重要来源之一。产甲烷菌和甲烷氧化菌是介导自然湿地甲烷循环的重要功能菌群。开展产甲烷菌和甲烷氧化菌多样性的检测研究有助于揭示微生物介导的甲烷循环以及自然湿地甲烷排放的时空异质性。传统基于培养的检测方法已被证实无法充分描述产甲烷菌和甲烷氧化菌的多样性,而分子检测方法为自然湿地土壤产甲烷菌和甲烷氧化菌的多样性检测提供了一种更准确和科学的工具。本文综述了自然湿地土壤产甲烷菌和甲烷氧化菌的定性和定量分子检测方法,包括末端限制性片段长度多态性(T-RFLP)、变性梯度凝胶电泳(DGGE)、荧光原位杂交(FISH)和实时定量PCR(real-time qPCR),重点分析了分子检测中两类重要的标记基因,总结了不同类型自然湿地产甲烷菌和甲烷氧化菌群落多样性的最新成果,提出了我国在该领域今后应深入研究探讨的一些问题及建议。  相似文献   

8.
当前在全球气候变化和人类活动双重作用下,湿地正在或者将要面临着显著的盐分变化形势,尤其是内陆和滨海咸化湿地。湿地是大气甲烷的重要排放源。甲烷排放是甲烷产生、氧化和传输过程综合作用的结果。盐分变化将影响湿地水-土环境,降低植物群落初级生产力和有机物积累速率,改变微生物主导的有机物矿化速率和途径等,进而改变湿地生态系统的结构和功能,影响湿地甲烷产生、氧化、传输和排放系列过程。本文综述了盐分(浓度与组成)对湿地甲烷产生与排放的影响结果,从底物供给、微生物(产甲烷菌和甲烷氧化菌等)数量、活性与群落组成、酶活性、植物、电子受体、p H和氧化还原电位等几个关键方面分析了盐分影响湿地甲烷排放过程的内在机制。在此基础上提出了今后需重点关注的5个方面:1)加强盐分浓度与组成对湿地甲烷产生、氧化、传输与排放影响的系统性、框架性研究;2)深入探讨盐分背景、变化幅度与速率的耦合如何影响湿地甲烷系列过程;3)不同离子组成及其交互效应如何影响湿地甲烷动态过程;4)结合生物学、基因组学及同位素技术等,加强湿地产甲烷菌与甲烷氧化菌与盐分的关系及其响应研究;5)湿地甲烷对盐分变化响应的时空分异规律。  相似文献   

9.
氮输入对天然湿地温室气体通量的影响及机制   总被引:2,自引:0,他引:2  
天然湿地是温室气体的一个重要排放源、汇和转换器,在稳定全球气候变化中占据着重要的位置。近年来,由于化石燃料的燃烧、氮肥使用、工业废水排放等输入的氮元素,大量进入湿地生态系统,直接或间接地影响着温室气体的生产与排放。本文综述了国内外有关氮输入对天然湿地主要温室气体通量的影响及机制研究进展,重点论述了以下几个方面:1)氮输入对天然湿地主要温室气体通量的影响存在促进、抑制或影响不显著3种情况;2)氮输入对CO2、CH4、N2O产生的控制作用改变了温室气体产生与消耗的微生物过程,提高了湿地生态系统生产力,增加了生物量,影响了周围环境因子;3)天然湿地温室气体通量的变化是输入氮的种类与浓度、土壤理化性质、微生物活性、相关环境因子、氧化还原潜力等因子综合作用的结果。探讨了现有研究存在的主要问题,提出了未来重点研究的方向。  相似文献   

10.
甲烷氧化菌对甲烷的氧化能力显著影响全球甲烷排放总量。研究河源湿地甲烷氧化菌群落对温度升高的响应有助于深入探究河源湿地生态系统的甲烷循环机制。采用高通量测序方法研究了温度升高后青海湖河源湿地甲烷氧化菌群落特征的变化。青海湖河源湿地甲烷氧化菌的优势菌门为变形菌门, 增温处理没有显著影响河源湿地甲烷氧化菌的群落多样性。河源湿地甲烷氧化菌的群落结构对温度升高响应明显, 增温显著增加了属水平优势菌群(相对丰度 > 0.1%)的相对丰度。LEfSe分析表明, 增温处理组与自然对照组共存在23个差异菌群, 增温显著增加了甲基球菌属的相对丰度, 显著降低了甲基杆菌属的相对丰度。河源湿地甲烷氧化菌群落功能与碳、氮代谢过程密切相关。整体而言, 河源湿地甲烷氧化菌的群落结构对温度升高较为敏感, 部分菌群的相对丰度变化显著。  相似文献   

11.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

12.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   

13.
Species composition affects the carbon turnover and the formation and emission of the greenhouse gas methane (CH4) in wetlands. Here we investigate the individual effects of vascular plant species on the carbon cycling in a wetland ecosystem. We used a novel combination of laboratory methods and controlled environment facilities and studied three different vascular plant species (Eriophorum vaginatum, Carex rostrata and Juncus effusus) collected from the same wetland in southern Sweden. We found distinct differences in the functioning of these wetland sedges in terms of their effects on carbon dioxide (CO2) and CH4 fluxes, bubble emission of CH4, decomposition of 14C-labelled acetate into 14CH4 and 14CO2, rhizospheric oxidation of CH4 to CO2 and stimulation of methanogenesis through root exudation of substrate (e.g., acetate). The results show that the emission of CH4 from peat–plant monoliths was highest when the vegetation was dominated by Carex (6.76 mg CH4 m−2 h−1) than when it was dominated by Eriophorum (2.38 mg CH4 m−2 h−1) or Juncus (2.68 mg CH4 m−2 h−1). Furthermore, the CH4 emission seemed controlled primarily by the degree of rhizospheric CH4 oxidation which was between 20 and 40% for Carex but >90% for both the other species. Our results point toward a direct and very important linkage between the plant species composition and the functioning of wetland ecosystems and indicate that changes in the species composition may alter important processes relating to controls of and interactions between greenhouse gas fluxes with significant implications for feedback mechanisms in a changing climate as a result.  相似文献   

14.
微生物介导的碳氮循环过程对全球气候变化的响应   总被引:10,自引:0,他引:10  
沈菊培  贺纪正 《生态学报》2011,31(11):2957-2967
土壤是地球表层最为重要的碳库也是温室气体的源或汇。自工业革命以来,对土壤温室气体的容量、收支平衡和通量等已有较多研究和估算,但对关键过程及其源/汇的研究却十分有限。微生物是土壤碳氮转化的主要驱动者, 在生态系统碳氮循环过程中扮演重要的角色,对全球气候变化有着响应的响应、适应及反馈,然而其个体数量,群落结构和多样性如何与气候扰动相互关联、进而怎样影响生态系统过程的问题仍有待进一步探索。从微生物介导的碳氮循环过程入手,重点讨论微生物对气候变化包括温室气体(CO2,CH4,N2O)增加、全球变暖、大气氮沉降等的响应和反馈,并由此提出削减温室气体排放的可能途径和今后发展的方向。  相似文献   

15.
水分非饱和的森林土壤是大气甲烷(CH4)汇和氧化亚氮(N2O)源,大气氮沉降增加是导致森林土壤碳氮气体通量不平衡的主要原因之一。土壤CH4吸收和N2O排放之间存在协同、消长和随机等复杂的耦合关系,关于氮素对两者产生过程的调节作用以及内在的微生物学机制至今尚不完全清楚。综述了森林土壤CH4吸收和N2O排放耦合过程的理论基础,土壤CH4和N2O的产生与消耗过程对增氮响应的生物化学和微生物学机制,指出各研究领域的不足和未来的研究重点。总体而言,低氮倾向于促进贫氮森林土壤CH4吸收,不改变土壤N2O的排放,而高氮显著抑制富氮森林土壤CH4吸收以及促进N2O排放。外源性氮素通过竞争抑制和毒性抑制来调控森林土壤CH4的吸收,而通过促进土壤硝化和反硝化过程来增加N2O的排放。然而,由于全球氮沉降控制试验网络分布的不均匀性、土壤碳氮通量产生过程的复杂性以及微生物分子生态学方法的局限性等原因,导致氮素对森林土壤碳氮通量的调控机制研究一直进展缓慢,未能将微生物功能群落动态与土壤碳氮通量真正地联系起来。未来研究应该从流域、生态系统和分子尺度上深入探讨土壤碳氮通量耦合作用的环境驱动机制,氮素对土壤CH4氧化和N2O产生过程的调控作用,以及增氮对土壤甲烷氧化菌和N2O产生菌活性和群落组成的影响。  相似文献   

16.
Wetlands are the largest source of methane (CH4) globally, yet our understanding of how process‐level controls scale to ecosystem fluxes remains limited. It is particularly uncertain how variable soil properties influence ecosystem CH4 emissions on annual time scales. We measured ecosystem carbon dioxide (CO2) and CH4 fluxes by eddy covariance from two wetlands recently restored on peat and alluvium soils within the Sacramento–San Joaquin Delta of California. Annual CH4 fluxes from the alluvium wetland were significantly lower than the peat site for multiple years following restoration, but these differences were not explained by variation in dominant climate drivers or productivity across wetlands. Soil iron (Fe) concentrations were significantly higher in alluvium soils, and alluvium CH4 fluxes were decoupled from plant processes compared with the peat site, as expected when Fe reduction inhibits CH4 production in the rhizosphere. Soil carbon content and CO2 uptake rates did not vary across wetlands and, thus, could also be ruled out as drivers of initial CH4 flux differences. Differences in wetland CH4 fluxes across soil types were transient; alluvium wetland fluxes were similar to peat wetland fluxes 3 years after restoration. Changing alluvium CH4 emissions with time could not be explained by an empirical model based on dominant CH4 flux biophysical drivers, suggesting that other factors, not measured by our eddy covariance towers, were responsible for these changes. Recently accreted alluvium soils were less acidic and contained more reduced Fe compared with the pre‐restoration parent soils, suggesting that CH4 emissions increased as conditions became more favorable to methanogenesis within wetland sediments. This study suggests that alluvium soil properties, likely Fe content, are capable of inhibiting ecosystem‐scale wetland CH4 flux, but these effects appear to be transient without continued input of alluvium to wetland sediments.  相似文献   

17.
Coastal eutrophication by nutrient fluxes from agricultural land to marine recipients is presently combated by measures such as the implementation of watershed-scale wetland creation programs aimed at nitrogen removal. Such created agricultural wetlands - termed ‘nitrogen farming wetlands’ (NFWs) - receive nitrogen (N) loads predominantly as nitrate, facilitating N removal by denitrification. However, the conversion of agricultural soils into waterlogged wetland area is likely to increase climate gas emissions, particularly methane (CH4). There is thus a need to evaluate the benefits and risks of wetland creation at a large, watershed-scale.Here we investigate N retention and CH4 emission originating from watershed-scale wetland creation in South Sweden, the relation between both processes, and how CH4 emission depends on individual wetland parameters. We combine data from intensively studied reference wetlands with an extensive wetland survey to predict N retention and CH4 emission with simple models, to estimate the overall process rates (large-scale effects) as well as spatial variation among individual NFWs.We show that watershed-scale wetland creation serves targeted environmental objectives (N retention), and that CH4 emission is comparably low. Environmental benefit and risk of individual wetlands were not correlated, and may thus be managed independently. High cover of aquatic plants was the most important wetland property that suppressed CH4 net production, potentially facilitating N retention simultaneously. Further, differences between wetlands in water temperature and wetland age seemed to contribute to differences in CH4 net production. The nationally planned wetland creation (12,000 ha) could make a significant contribution to the targeted reduction of N fluxes (up to 27% of the Swedish environmental objective), at an environmental risk equaling 0.04% of the national anthropogenic climate gas emission.  相似文献   

18.
The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.  相似文献   

19.
Northern Chile harbors different bioclimatic zones including hyper-arid and arid ecosystems and hotspots of microbial life, such as high altitude wetlands, which may contribute differentially to greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In this study, we explored ground level GHG distribution and the potential role of a wetland situated at 3800 m.a.s.l, and characterized by high solar radiation <?1600 W m?2, extreme temperature ranges (?12 to 24 °C) and wind stress (<?17 m s?1). The water source of the wetland is mainly groundwater springs, which generates streams and ponds surrounded by peatlands. These sites support a rich microbial aquatic life including diverse bacteria and archaea communities, which transiently form more complex structures, such as microbial mats. In this study, GHG were measured in the water and above ground level air at the wetland site and along an elevation gradient in different bioclimatic areas from arid to hyper-arid zones. The microbiome from the water and sediments was described by high-throughput sequencing 16S rRNA and rDNA genes. The results indicate that GHG at ground level were variable along the elevation gradient potentially associated with different bioclimatic zones, reaching high values at the high Andean steppe and variable but lower values in the Atacama Desert and at the wetland. The water areas of the wetland presented high concentrations of CH4 and CO2, particularly at the spring areas and in air bubbles below microbial mats. The microbial community was rich (>?40 phyla), including archaea and bacteria potentially active in the different matrices studied (water, sediments and mats). Functional microbial groups associated with GHG recycling were detected at low frequency, i.e., <?2.5% of total sequences. Our results indicate that hyper-arid and arid areas of northern Chile are sites of GHG exchange associated with various bioclimatic zones and particularly in aquatic areas of the wetland where this ecosystem could represent a net sink of N2O and a source for CH4 and CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号