首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
煤附生真菌产漆酶菌株的分离鉴定及产酶特性研究   总被引:3,自引:1,他引:2  
从煤炭样品中筛选到一株产漆酶活性菌株,经菌体形态观察和ITS序列分析,鉴定为Trichoderma asperellum W03。菌株所产漆酶的最适反应pH为3.5-4.5,最适反应温度45℃,类似于白腐真菌漆酶。液态发酵条件的均匀设计实验表明,适宜的发酵培养基组成为:土豆200.00g/L、葡萄糖9.36g/L、米糠粉37.44g/L、硝酸钾4.00g/L、KH2PO43.20g/L、MgSO4·7H2O2.00g/L、CuSO4·5H2O0.005g/L、初始pH8.0;在33℃、180r/min、50mL/250mL的摇瓶培养条件下,棘孢木霉W03在孢子接种培养后48h、84h产酶量较高,分别处在菌体的快速生长期和衰亡期;菌体产酶受Cu2+、联苯胺诱导,而受1-萘酚、愈创木酚和2,4-D抑制。  相似文献   

2.
栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化   总被引:4,自引:1,他引:3  
利用显色反应对栓孔菌属(Trametes)进行了漆酶高产菌株的筛选,并对目标菌株的产酶条件进行了优化,在添加愈创木酚的固体培养基中,通过显色反应初步筛选出漆酶高产菌株东方栓孔菌Trametes orientalis Cui 6300;进一步通过单因子分析、正交试验和ABTS法确定了菌株Cui 6300的最适产酶条件:麦芽糖15 g/L,蛋白胨3 g/L,pH 4.8,Cu2+2.0 mmol/L,培养温度28°C,接种饼直径1.5 cm,此时酶活最高可达19.923 U/mL;同时探索了Cu2+浓度及添加时间对其菌丝生物量和漆酶活力的影响。研究表明,Cu2+最适添加浓度为2.0 mmol/L,添加时间为接种后第3天。  相似文献   

3.
不同真菌漆酶的性质研究   总被引:4,自引:0,他引:4  
王宜磊 《生物技术》2003,13(2):9-10
为了更好开发利用漆酶,用邻联甲苯胺法比较分析了彩绒革盖菌、毛栓菌和多孔菌在液体培养时的产酶曲线、酶作用的最适pH值、最适酶解温度及无机离子对酶活的影响。结果表明,不同漆酶产酶曲线不同,彩绒革盖菌和多孔菌,第9d达产酶高峰,峰值活力分别达395.6u/ml和412.2u/ml;毛栓菌,第11d达到产酶高峰,峰值本科活较不同真菌漆酶的性质研究高达554.6u/ml。漆酶性质有明显差别,最适酶解温度不同,彩绀革盖菌和多孔菌漆酶最适酶解温度为25℃;毛栓菌为30℃;最适酶解pH值有差异,彩绒革盖菌漆酶最适酶解,pH值为4.5,毛栓菌为4.0,多孔菌为4.2;不同离子对酶活的影响不同;K^、Zn^2 、对彩绒革盖菌所产漆酶有激活作用;K^ 、Zn^2 、Cu^2 对毛栓菌所产漆酶有激活作用;Mn^2 、Mg^2 对多孔菌所产漆酶有激活作用;Ag^ 、Fe^3 对三种菌所产漆本科均有明显抑制作用。  相似文献   

4.
多孔菌Polyporus W38漆酶的纯化及性质研究   总被引:2,自引:0,他引:2  
对多孔菌 (PolyporusW 38)漆酶进行了硫酸铵盐析、半透膜透析、SephadexG75及SephadexG2 5柱层析纯化 ,并研究了漆酶的产酶曲线及酶作用最适条件。结果表明在该培养条件下 ,多孔菌第 9d达产酶高峰 ,峰值酶活为 412u/mL ,酶作用的最适pH值为 4.2 ,最适酶解温度为 2 5℃ ,Mg2 +,Mn2 +对漆酶有激活作用 ,而Ag+,Fe3 +和Cl-则能明显抑制漆酶活性。  相似文献   

5.
[目的]研究复合诱导对胶质射脉革菌BBEL0901产漆酶的影响及其粗酶液对染料的脱色性能。[方法]采用分光光度法测定漆酶活性及其染料脱色性能。[结果]甘草渣和Cu2+对BBEL0901产漆酶均有促进作用,于发酵的第6 d向含甘草渣的低氮培养基中添加Cu2+(0.5 mmol/L)对漆酶的协同诱导作用最显著,活性达325.1 U/m L,分别为Cu2+单独诱导、甘草渣单独诱导和未诱导的4倍、14.4倍和19.8倍。粗酶液对不同结构的染料均有较强的脱色能力,对三苯甲烷类染料的脱色效果最好,脱色率达80%以上。[结论]甘草渣与Cu2+对BBEL0901漆酶具有协同诱导作用,酶活最高可达325.1 U/m L,产业化潜力大,所得粗酶液在染料脱色方面具有良好的应用前景。  相似文献   

6.
王宜磊 《生物技术》2003,13(3):14-16
研究了碳源、氮源、愈创木酚、香兰素及培养条件对漆酶分泌的影响 ;结果表明 ,麦草粉作碳源、(NH4 ) 2 SO4 作氮源有利于漆酶的分泌 ,适宜浓度的愈创木酚和香兰素等对漆酶的产生有一定的作用 ;pH在 3 0 - 8 0的范围内对漆酶的分泌影响差别不大 ,培养温度、接种量、通气量对漆酶的分泌有较大影响。漆酶最适pH值为 4 0 ,最适反应温度为 30℃ ,K+ 、Zn2 + 、Cu2 + 离子可激活漆酶 ;而Ag+ 、Fe3+ 、Cl- 离子可抑制漆酶活性。漆酶的Km值为 1 81× 10 - 3mol L。  相似文献   

7.
木霉GXC产β-葡聚糖酶条件和酶学性质   总被引:7,自引:0,他引:7  
研究了木霉GXC产β-葡聚糖酶的条件.结果表明,最适产酶碳源为麸皮,氮源为硫酸铵;产酶的最适条件为初始pH为4.0~5.0,30℃培养44h.粗酶液经硫酸铵沉淀、Sephadex G-25、Sephadex G-100和DEAE-Sehadex A-50柱层析得到纯β-葡聚糖酶,SDS-PAGE凝胶电泳显示一条带,测得分子量为35kD.该酶最适反应pH5.0,最适反应温度为60℃,在40℃以下、pH4.0~5.0酶活力相对稳定.5.0mmol/L以下的Ca2+、Zn2+和Fe2+,以及10.0mmol/L以下的Co2+对酶活力有激活作用;而Cu2+和Fe3+具有抑制作用.  相似文献   

8.
一种pH稳定的黄色漆酶的快速纯化和性质特征   总被引:1,自引:0,他引:1  
通过丙酮沉淀和 DEAE- cellulose DE52 柱层析, 快速、有效地从一株白腐菌 Trametes sp. SQ01 的发酵液中纯化了漆酶。纯化的漆酶并非传统漆酶那样呈现蓝色, 而是一种黄色蛋白。以 ABTS 为底物时, 该酶的最适 pH 和温度分别是 pH 4.5 和 70°C, Km 为 0.029 mmol/L。T. SQ01 漆酶在 pH 3.0~11.0时, 酶活相对稳定, 在 pH 5.0 时最为稳定, 是目前报道的 pH 稳定性最好的漆酶。低浓度的金属离子(1 mmol/L) Cu2+、Mg2+ 、Ca2+ 和Co2+ 对漆酶有促进作用, 而高浓度(5 mmol/L)的Co2+、Zn2+、 Mn2+、Mg2+ 却抑制漆酶酶活。SDS 对该酶有激活作用, 当其浓度为1 mmol/L时, 漆酶相对酶活达到128%。DTT对漆酶强烈抑制, 即使是浓度为1 mmol/L, 亦可完全抑制漆酶酶活。纯化后的漆酶对亮蓝(RBBR) (100 mg/L)的脱色能力显著, 0.5 U/mL 的漆酶在 10 min内即可达到 80%的脱色率。T. sp. SQ01 漆酶的快速纯化以及高效脱色的能力表明该酶在染料脱色降解方面有着广阔的应用前景。  相似文献   

9.
高酶活菌株的筛选及漆酶特性   总被引:5,自引:0,他引:5  
通过Bavendamn氏反应和液体发酵实验筛选出漆酶高产菌株 ,并对其产酶条件和酶活性进行了研究。结果表明 71株实验真菌中有 64株Bavendamn氏反应呈阳性 ,且阳性菌株都具有漆酶活性 ;不同菌株产酶培养基最适碳源、氮源不同 ,采绒革盖菌以淀粉为碳源、干酪素为氮源 ,毛栓菌以麦草粉为碳源、硫酸铵为氮源 ,有利于酶的分泌 ;不同来源漆酶性质不尽相同 ,采绒革盖菌漆酶最适酶解温度为 2 5℃ ,最适酶解pH值为4.6,毛栓菌则分别为 3 0℃和 pH 4.0 ;K+ ,Zn2 + 等对 2种漆酶均有激活作用 ,Ag+ 则能明显抑制漆酶活性。  相似文献   

10.
对链霉菌G4的产酶发酵条件和溶菌特性进行研究结果表明:蔗糖30 g/L、大豆蛋白胨12.5 g/L、牛肉膏2 g/L,对产酶最为有利;G4溶菌酶最适培养温度33 ℃,培养时间72 h,培养基初始pH 8.G4溶菌酶的最适作用温度和最适作用pH分别是55 ℃和6.5,多数金属离子会抑制G4溶菌酶的活性,其中Zn2+、Cu2+、Fe2+、 Pb2+几乎可以使其完全失活;对几种细菌、酵母菌的研究表明,G4溶菌酶对卵清溶菌酶不能作用的变形链球菌和金黄色葡萄球菌有很强的溶解活性.  相似文献   

11.
一株新分离的白腐菌Z1可在两种农业废弃物(麸皮和稻草秸杆)基质上生长并分泌漆酶,其中在麸皮基质上的漆酶产量比在稻草秸杆基质上的漆酶产量高出10倍左右,同时活性电泳显示Z1菌在麸皮基质上可产生3条漆酶同工酶,比在稻草秸杆基质上多1条,其活性也比在稻草秸杆基质中的漆酶活性高。  相似文献   

12.
The effect of radiation pasteurization of sugar cane bagasse and rice straw and fermentation using various strains of fungi were studied for upgrading of cellulosic wastes. The initial contamination by fungi and aerobic bacteria both in bagasse and straw was high. The doses of 30 kGy for sterilization and 8 kGy for elimination of fungi were required. Irradiation effect showed that rice straw contained comparatively radioresistant microorganisms. It was observed that all the fungi (Hericium erinacium, Pleurotus djamor, Ganoderma lucidum, Auricularia auricula, Lentinus sajor-caju, Coriolus versicolor, Polyporus arcularius, Coprinus cinereus) grow extending over the entire substrates during one month after inoculation in irradiated bagasse and rice straw with 3% rice bran and 65% moisture content incubated at 30°C. Initially, sugar cane bagasse and rice straw substrates contained 39.4% and 25.9% of cellulose, 22.9% and 26.9% of hemicellulose, and 19.6% and 13.9% of lignin + cutin, respectively. Neutral detergent fibre (NDF) values decreased significantly in sugar cane bagasse fermented byG. lucidum, A. auricula andP. arcularius, and in rice straw fermented by all the 8 strains of fungi. Acid detergent fibre (ADF) values also decreased in bagasse and rice straw fermented by all the fungi.P. arcularius, H. erinacium, G. lucidum andC. cinereus were found to be the most effective strains for delignification of sugar cane bagasse.  相似文献   

13.
Summary Growth of Polyporus hirsutus on rice straw rapidly increases its susceptibility to cellulase and xylanase. Addition of ammonium sulphate to the straw (0.1 g/g) enhances cellulase and xylanase production but does not affect laccase production by the fungus although it appears to inhibit its growth.  相似文献   

14.
White rot fungi produce three main extracellular enzymes involved in ligninolysis; laccase, lignin peroxidase and manganese peroxidase. Though all white rot fungi do not produce all three enzymes, laccase occupies an important place in ligninolysis. The present paper reports its production by some white rot fungi; Daedalea flavida, Phlebia brevispora, Phlebia radiata and Polyporus sanguineus under different nutritional conditions. Of the various basal media tested, mineral salts malt extract broth proved to be the best medium for laccase production. Sugarcane bagasse proved to be the best laccase inducer among the various supplements added to different media.  相似文献   

15.
Aim:  To produce high laccase activities from the white-rot fungus Fomes fomentarius .
Methods and Results:  Different culturing methods, viz, cell immobilization on stainless steel sponges and plastic material and solid-state fermentation (SSF) using wheat bran as substrate were used for laccase production by the white-rot fungus F. fomentarius . The SSF study expresses the highest laccase activities, nearly to 6400 U l−1 after 13 days of laboratory flasks cultivation. When the wheat bran medium was supplemented with 2 mmol l−1 copper sulfate, laccase activity increased by threefold in comparison to control cultures, reaching 27 864 U l−1. With the medium thus optimized, further experiments were performed in a 3 l fixed-bed bioreactor (working volume 1·5 l) leading to a laccase activity of about 6230 U l−1 on day 13.
Conclusions:  The results obtained clearly showed the superiority of wheat bran for laccase production over stainless steel sponges and plastic material. Supplementing the wheat bran solid medium with 2 mmol l−1 copper sulfate allowed obtaining high activities at flask scale. The system was scaled to fixed-bed laboratory reactor.
Significance and Impact of the Study:  The high enzyme production along with the low-cost of the substrate, showed the suitability of the system F. fomentarius – SSF for industrial purposes.  相似文献   

16.
Methods are described for the analysis, production, and isolation of laccase produced by a strain of Polyporus anceps. A simple quantitative colorimetric assay based on the oxidation of syringaldazine to syringaldazine quinone is described. Using a defined medium supplemented with the amino acids cysteine and histidine and with elevated phosphate, consistently high titers of laccase were obtained. The enzyme was isolated directly from fermentation medium by binding to diethylaminoethyl cellulose, and, once bound to the ion exchanger, it could be stored for 6 months at -70°C with minimal loss of activity. The enzyme was quantitatively recovered from the resin by elution with 0.2 M phosphate buffer (pH 5.0).  相似文献   

17.
The litter-dwelling fungus Fusarium incarnatum LD-3 has been identified as a novel producer of laccase. The present work was oriented towards the optimization of various cultivation conditions for maximizing laccase production under solid substrate fermentation. The process parameters were optimized by the “one factor at a time” approach. Maximum laccsase production was obtained at pH 5.0 and at a temperature of 28 °C with 60 % moisture content using rice bran as a substrate. The laccase production was enhanced in the presence of aromatic inducer, i.e. ortho-dianisidine at a concentration of 0.5 mM. Laccase production was further increased by 52.56 % when the medium was supplemented with 2 % (v/v) alcohol. Among the various amino acids tested as a growth factor and nitrogen source, D-Serine and DL-2 Amino n-butyric acid, DL-Alanine and L-Glycine were found to be the most suitable for laccase production. The highest laccase production (1,352.64 U/g) was achieved under optimized conditions, and was 2.1-fold higher than the unoptimized conditions. Thus, the novel litter-dwelling fungal isolate Fusarium incarnatum LD-3 seems to be an efficient producer of laccase and can be further exploited for biotechnological applications. This is the first report on the optimization of cultivation conditions and inducers for laccase production from Fusarium incarnatum LD-3.  相似文献   

18.
郭良昊  陈海秀  李松  张威  魏胜华 《菌物学报》2020,39(10):1948-1959
漆酶是一种绿色高效的多酚氧化酶,在降解双酚A方面具有巨大潜力。为降低发酵产漆酶的成本及考察漆酶在双酚A降解中的能力,本研究以麸皮和柚皮为主要基质,优化了栓菌固态发酵产漆酶条件,对优化后获得的漆酶在双酚A降解中的应用进行了研究。结果表明,在培养基组分为:麸皮和柚皮粉比例为6:4(W/W)、固液比1:2.5(W/V)、铜离子2%(W/W)、蔗糖3%(W/W)、硝酸钾2%(W/W)、稻壳20%(W/W)的条件下,栓菌发酵产漆酶的酶活最高,发酵11d后,酶活可达到38.4U/gds。当双酚A初始浓度为10μg/mL时,在55℃条件下酶解140min后,双酚A基本降解完全。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号