首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
两栖类正经历全球范围内的种群衰退,很多两栖动物集群灭绝事件与环境病原体(如壶菌(Batrachochytrium dendrobatidis)的侵扰有关。MHC基因的表达产物在有颌脊椎动物免疫应答过程中起关键作用,其多态性通常与动物对疾病的抗性或易感性密切相关,因而被认为是研究动物适应性进化的最佳候选基因之一。本文对中国特有的无尾两栖动物凹耳蛙(Odorrana tormota)MHC II类B基因多态性进行初步研究。首先,利用1对通用引物扩增出凹耳蛙MHC II类B基因exon2长约180bp的DNA片段。在此基础上,利用ligation-mediated PCR进一步获取侧翼未知序列,序列拼接后长2,030bp,包含exon2以及intron1和intron2的部分序列。基于上述序列设计出凹耳蛙B基因exon2特异性引物(IIQ1BU/IIQ1BD),对该物种黄山种群32个样品进行PCR扩增和克隆测序,共获得34个不同的等位基因,等位基因序列核苷酸和氨基酸变异位点的比例分别为16.17%(33/204)和26.87%(18/67),大多数氨基酸变异位点位于推测的抗原结合位点(antigen binding sites,ABS)。每个样品包含2-5个等位基因,结合等位基因序列特征以及cDNA表达分析结果,推测凹耳蛙至少拥有3个可表达的B基因座位。与文献报道的蛙科其他物种比较后发现,尽管凹耳蛙目前的分布区非常狭窄,但其MHC II类B基因多态性明显高于蛙科其他动物。等位基因碱基替换模式提示凹耳蛙MHC II类B基因曾经历过强烈的正选择作用,ABS区的dN值显著大于dS(P<0.05),PAML软件包CODEML程序中不同模型的似然比检测(likelihood rate test)结果同样支持上述推论,贝叶斯经验贝叶斯路径(Bayesian Em-pirical Bayes)共检测出5个显著受正选择作用的氨基酸位点。贝叶斯系统树的拓扑结构显示,无尾两栖类不同科的等位基因分别形成单系群,但蛙科不同属的等位基因未能形成单系群,蛙属绿池蛙(Rana clamitans)的1个等位基因与臭蛙属凹耳蛙的部分等位基因享有共同的谱系关系,提示蛙科不同属间的B基因存在跨种多态性。  相似文献   

2.
The major histocompatibility complex (MHC) has an important role in immune response and is known as the most polymorphic locus in vertebrates. We developed three pairs of polymerase chain reaction primers of the alpha-2 domain (exon 3) of MHC class I and the beta-2 (exon 3) and beta-3 domains (exon 4) of MHC class II B gene in the German mirror common carp (Cyprinus carpio L.). We analyzed the three loci in a population of 65 individuals that had suffered the serious disease of gill rot. Five to six variable nucleotide sites and two to six variable amino acid sites (71.43%) were detected in the exon sequence of the sampled populations, indicating that many of them corresponded to amino acids involved in antigen recognition. Deviation from Hardy–Weinberg equilibrium and linkage disequilibrium were differentially found in some loci, which will be important for further study of disease resistance/susceptibility and population evolution.  相似文献   

3.
Amphibians can be more vulnerable to environmental changes and diseases than other species because of their complex life cycle and physiological requirements. Therefore, understanding the adaptation of amphibians to environmental changes is crucial for their conservation. Major histocompatibility complex (MHC) presents an excellent tool for the investigation of adaptive variations and the assessment of adaptive potential because it can be under strong diversifying selection. Here, we isolated the MHC class II B (MHCIIB) gene from cDNA sequences of the black‐spotted frog (Pelophylax nigromaculatus), a widespread amphibian species in China, and designed locus‐specific primers to characterize adaptive variability of this amphibian. Ten alleles were identified from 67 individual frogs of three populations and no more than two alleles were present in each individual animal. Furthermore, none of the sequences had indels or/and stop codons, which is in good agreement with locus‐specific amplification of a functional gene. However, we found low polymorphism at both nucleotide and amino acid levels, even in the antigen‐binding region. Purifying selection acting at this locus was supported by the findings that the dN/dS ratio across all alleles was below 1 and that negatively selected sites were detected by different methods. Allele frequency distributions were significantly different among geographic populations, indicating that physiographic factors may have strong effect on the genetic structure of the black‐spotted frog. This study revealed limited polymorphism of three adjacent black‐spotted frog populations at the functional MHCIIB locus, which may be attributed to region‐specific differences. The locus‐specific genotyping technique developed in this study would provide a foundation for future studies on adaptive divergence among different frog populations.  相似文献   

4.
Babik W  Durka W  Radwan J 《Molecular ecology》2005,14(14):4249-4257
Major histocompatibility complex (MHC) genes, coding molecules which play an important role in immune response, are the most polymorphic genes known in vertebrates. However, MHC polymorphism in some species is limited. MHC monomorphism at several MHC class I and II loci was previously reported for two neighbouring northern European populations of the Eurasian beaver (Castor fiber) and reduced selection for polymorphism has been hypothesized. Here, we analysed a partial sequence of the second exon of the MHC II DRB locus from seven relict European and Asian beaver populations. We detected 10 unique alleles among 76 beavers analysed. Only a western Siberian population was polymorphic, with four alleles detected in 10 individuals. Each of the remaining populations was fixed for a different allele. Sequences showed considerable divergence, suggesting the long persistence of allelic lineages. A significant excess of nonsynonymous substitutions was detected at the antigen binding sites, indicating that sequence evolution of beaver DRB was driven by positive selection. Current MHC monomorphism in the majority of populations may be the result of the superimposition of the recent bottleneck on pre-existing genetic structure resulting from population subdivision and differential pathogen pressure.  相似文献   

5.
Genes of the major histocompatibility complex (MHC) mainly code for proteins of the immune system of jawed vertebrates. In particular, MHC class I and II cell surface proteins are crucial for the self/non-self discrimination of the adaptive immune system and are the most polymorphic genes in vertebrates. Positive selection, gene duplications and pseudogenes shape the face of the MHC and reflect a highly dynamic evolution. Here, we present for the first time data of the highly polymorphic MHC class II DRB exon 2 of a representative of the mammalian order scandentia, the northern tree shrew Tupaia belangeri. We found up to eight different alleles per individual and determined haplotype constitution by intensively studying their inheritance. The alleles were assigned to four putative loci, all of which were polymorphic. Only the most polymorphic locus was subject to positive selection within the antigen binding sites and only alleles of this locus were transcribed.  相似文献   

6.
Bos DH  DeWoody JA 《Immunogenetics》2005,57(10):775-781
Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, transspecies evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relict of their unique historical demography, not their phylogenetic legacy. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

7.
Xu TJ  Sun YN  Wang RX 《Marine Genomics》2010,3(2):117-123
Allelic polymorphism and evolution mechanism of major histocompatibility complex (MHC) genes has been investigated in many mammals, however, much less is known in teleost. In order to investigate the mechanisms creating and maintaining variability at the MHC class II DAA locus, we examined the polymorphism, gene duplication and balancing selection of MHC class II DAA gene of the half-smooth tongue sole (Cynoglossus semilaevis). We described 33 alleles in the C. semilaevis, recombination and gene duplication seems to play more important roles in the origin of new alleles. The rate of non-synonymous substitutions (d(N)) occurred at a significantly higher frequency than that of synonymous substitutions (d(S)) in peptide-binding region (PBR) and non-PBR, suggesting balancing selection for maintaining polymorphisms at the MHC II DAA locus. Many positive selection sites were found to act very intensively on antigen-binding sites. Our founding suggests a snapshot in an evolutionary process of MHC-DAA gene evolution of the C. semilaevis.  相似文献   

8.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

9.
Major histocompatibility complex (MHC) genes play an important role in the immune response of vertebrates. Allelic polymorphism and evolutionary mechanism of MHC genes have been investigated in many mammals, but much less is known in teleosts. We examined the polymorphism, gene duplication and balancing selection of the MHC class II DAB gene of the half-smooth tongue sole (Cynoglossus semilaevis); 23 alleles were found in this species. Gene duplication manifested as three to six distinct sequences at each domain in the same individuals. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the PBR domain, suggesting balancing selection for maintaining polymorphisms at the MHC II DAB locus. Many positive selection sites were found to act very intensely on antigen-binding sites of MHC class II DAB gene.  相似文献   

10.
In vertebrates, the genes of the major histocompatibility complex (MHC) are among the most debated candidates accounting for co-evolutionary processes of host-parasite interaction at the molecular level. The exceptionally high allelic polymorphism found in MHC loci is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or rare allele advantage (= frequency dependent selection). While investigations under natural conditions are still very rare, studies on humans or mice under laboratory conditions revealed support for both hypotheses. We investigated nematode burden and allelic diversity of a functional important MHC class II gene (DRB exon2) in free-ranging yellow-necked mice (Apodemus flavicollis). Twenty-seven distinct Apfl-DRB alleles were detected in 146 individuals with high levels of amino acid sequence divergence, especially at the antigen binding sites (ABS), indicating selection processes acting on this locus. Heterozygosity had no influence on the infection status (being infected or not), the number of different nematode infections (NNI) or the intensity of infection, measured as the individual faecal egg count (FEC). However, significant associations of specific Apfl-DRB alleles to both nematode susceptibility and resistance were found, for all nematodes as well as in separate analyses of the two most common nematodes. Apodemus flavicollis individuals carrying the alleles Apfl-DRB*5 or Apfl-DRB*15 revealed significantly higher FEC than individuals with other alleles. In contrast, the allele Apfl-DRB*23 showed a significant association to low FEC of the most common nematode. Thus, our results provide evidence for pathogen-driven selection acting through rare allele advantage under natural conditions.  相似文献   

11.
The sable (Martes zibellina) is a medium-sized mustelid inhabiting forest environments in Siberia, northern China, the Korean Peninsula, and Hokkaido Island, Japan. To further understand the molecular evolution of the major histocompatibility complex (MHC), we sequenced part of exon 2 in MHC class II DRB genes, including codons encoding the antigen binding site, from 33 individuals from continental Eurasia and Japan. We identified 16 MHC class II DRB alleles (Mazi-DRBs), some of which were geographically restricted and others broadly distributed, and eight putative pseudogenes. A single-breakpoint recombination analysis detected a recombination site in the middle of exon 2. A mixed effects model of evolution analysis identified five amino acid sites presumably under positive selection. These sites were all located in the region 3′ to the recombination site, suggesting that positive selection and recombination could be committed to the diversity of the M. zibellina DRB gene. In a Bayesian phylogenetic tree, all Mazi-DRBs and the presumed pseudogenes grouped within a Mustelidae clade. The Mazi-DRBs showed trans-species polymorphism, with some alleles most closely related to alleles from other mustelid species. This result suggests that the sable DRBs have evolved under long-lasting balancing selection.  相似文献   

12.
We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.  相似文献   

13.
Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II β1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a “gene walking” technique to obtain intron 2 sequences that flanked MHC class IIβ exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class IIβ loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the β1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations.  相似文献   

14.
15.
主要组织相容性复合体(Major histocompatibility complex,MHC) 基因是由一组紧密连锁的基因组成,是哺乳动物免疫系统中最重要的组成部分。本文选择3 个MHC 基因座位的第二外元,即:MHC-I 类基因和II 类基因的DRA 和DQB 座位,初步调查濒危物种中华白海豚的遗传变异。共鉴定了2 个DRA、2 个DQB 和7 MHC-I等位基因。DRA 座位遗传变异非常低,而DQB 和MHC-I 座位具有相对较高水平的遗传变异。并且,在DQB 和MHC-I 基因座位的假定的抗原结合位点(Antigen binding sites,ABS),非同义替代明显大于同义替代,提示平衡选择(Balancing selection)维持这两个座位的多态性,而在DRA 座位上,并没有检测到平衡选择。系统发生分析表明中华白海豚的MHC 等位基因没有聚在一起,而是和其他的物种聚在一起,符合MHC 跨种进化(Transspecies evolution)的模式。  相似文献   

16.
为研究鸡MHC B-LBⅡ基因的遗传多态性,首先在8个中国地方鸡种(藏鸡、仙居鸡、北京油鸡、固始鸡、斗鸡、丝羽乌骨鸡、白耳鸡和狼山鸡)B-LBⅡ基因第二外显子扩增了一长度为 175 bp 的 DNA 片段并进行 SSCP 基因型分析;在8 个地方鸡种共 467 个个体中检测到 37 个 PCR-SSCP 基因型;从被检样品中筛选出不同基因型的个体,并在其 B-LBⅡ基因组中扩增了一个包括其第二外显子和第二内含子在内长度为374 bp的片段,通过克隆和测序获得了该片段的核苷酸序列。经序列分析,在前述地方鸡种被筛选出的 30 个无血缘关系的个体中发现了 31 个 B-LBⅡ新等位基因,并参照哺乳动物 MHC II 类 B 等位基因命名规则进行了命名。对这 31 个 B-LBⅡ新等位基因长度为 374 bp 的 DNA 片段进行比对表明,在其第二外显子序列上共有 68 个多态性变异位点,其中简约性信息位点 51 个,单变异位点 17 个,具有丰富的遗传多态性。在这些多态性变异位点中,出现在遗传密码子第一和第二位上的碱基替换率分别为 36.76% 和 35.29%。等位基因序列间的相似性估测为 90.6%-99.5%;B-LBⅡ基因第二外显子的错义替换率和同义替换率分别为 14.64±2.67%和 2.92±0.94%。结果表明,B-LBⅡ基因的丰富遗传多态性主要是由基因重组和平衡选择效应所引起的。对 B-LBⅡ等位基因第二外显子所编码的 B-LBⅡ分子β1 结构域氨基酸序列比对发现,31 个 B-LBⅡ新等位基因属于 26 个等位基因主型;在β1结构域氨基酸序列的 33个变异位点上,存在 6 个同义替换和 27 个错义替换。分析认为,那些发生在多肽结合位点上的氨基酸错义替换与鸡 MHC B-LBⅡ分子的免疫特异性有关。该结果可为鸡的抗病育种研究提供分子生物学依据。  相似文献   

17.
18.
Xu TJ  Sun YN  Chen SL 《Genetica》2010,138(11-12):1251-1259
Major histocompatibility complex (MHC) genes play an important role in the immune response of vertebrates. Allelic polymorphism and pattern of evolution in MHC genes has been investigated in many mammals, however, much less is known in teleost. In the present study, we have investigated complete MHC Iα gene consists of 7 exons and 6 introns in Olive flounder (Paralichthys olivaceus). Genetic variation in the MHC class Iα gene was also tested in flounder. In 32 individuals, a total of 62 alleles were detected from exon 2 of MHC class Iα gene. The rate of non-synonymous substitutions (d ( N )) occurred at a significantly higher frequency than that of synonymous substitutions (d ( S )) in PBR and non-PBR, suggesting that balancing selection for maintaining polymorphisms at the MHC Iα locus. Many positive selection sites were found to act very intensively on antigen binding sites. Our founding suggests a snapshot in an evolutionary process of MHC Iα gene evolution of the P. olivaceus.  相似文献   

19.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

20.
The human leukocyte antigen (HLA) complex, encompassing 3.5 Mb of DNA from the centromeric HLA-DPB2 locus to the telomeric HLA-F locus on chromosome 6p21, encodes a major part of the genetic predisposition to develop type 1 diabetes, designated "IDDM1." A primary role for allelic variation of the class II HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci has been established. However, studies of animals and humans have indicated that other, unmapped, major histocompatibility complex (MHC)-linked genes are participating in IDDM1. The strong linkage disequilibrium between genes in this complex makes mapping a difficult task. In the present paper, we report on the approach we have devised to circumvent the confounding effects of disequilibrium between class II alleles and alleles at other MHC loci. We have scanned 12 Mb of the MHC and flanking chromosome regions with microsatellite polymorphisms and analyzed the transmission of these marker alleles to diabetic probands from parents who were homozygous for the alleles of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes. Our analysis, using three independent family sets, suggests the presence of an additional type I diabetes gene (or genes). This approach is useful for the analysis of other loci linked to common diseases, to verify if a candidate polymorphism can explain all of the association of a region or if the association is due to two or more loci in linkage disequilibrium with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号