首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
被动声学监测通过分析鸟鸣声信息来实现物种识别,为鸟类多样性监测提供了一种切实可行的技术方案。由于鸟种的鸣声复杂多变,如何通过声纹快速准确辨别物种,分析鸟类丰度,降低对人工操作的需求等技术难题,成为基于声纹的鸟类多样性监测所面临的挑战。本文提出了基于音节聚类的鸟类鸣声监测框架:首先通过音高、频率平坦度等音频特征在声纹数据中提取音节,然后通过无监督表征学习与狄利克雷过程(Dirichlet process)混合模型对音节进行深度无监督聚类训练,完成音节聚类和自动音节种类推断。分析结果表明,本文提出的基于音节聚类的鸟类鸣声监测框架在处理开源数据集白腰文鸟(Lonchura striata)的曲目时可获得接近90%的聚类准确率。在此基础上,本研究对2022年4-5月在广州市白云山公园固定监测点所录制的10种鸟类鸣声进行了无监督的音节聚类分析,验证了本文所提出的基于音节聚类的鸟类鸣声监测框架的有效性:本技术不仅可以支持快速鸟类物种识别,还可以统计和分析不同物种鸟鸣在时间、频度、数量上的变化。这些结果表明,基于音节聚类的鸟类鸣声监测框架可以显著降低对人工标注训练数据的要求,克服传统鸟鸣物种识别框架...  相似文献   

2.
两栖动物是我国受威胁程度最高的动物类群,加强两栖动物资源调查和多样性监测,是开展两栖动物保护和濒危物种拯救行动的关键性基础工作。传统的两栖动物监测主要以形态学和声学为基础,耗时费力,且难以发现一些隐蔽性较强的稀有物种。基于环境DNA(environmental DNA, eDNA)的调查方法以其快速、灵敏、高效、无创等独特优势,为两栖动物多样性监测及保护提供了新的工具。综述了eDNA在两栖动物多样性监测、外来入侵和珍稀濒危物种调查、物种丰度或生物量估测等研究领域的应用进展,分析了两栖动物eDNA产生、扩散、迁移和降解的动态变化特征及其关键影响因子,探讨了eDNA应用于两栖动物监测研究的局限性并提出了优化建议,同时对未来的研究方向进行了展望,以充分挖掘eDNA在两栖动物监测中的应用潜力,为两栖动物多样性保护和管理提供新的思路。  相似文献   

3.
鸣叫对无尾两栖类动物的生存与繁殖起重要作用。蛙类的鸣叫行为受到环境因素影响表现出一定的节律性。2016年8和9月,采用录音机和指向性话筒,在野外录制了57只沼水蛙(Hylarana guentheri)的鸣声并对其鸣声特征进行分析;通过悬挂录音笔和自动温湿度记录仪研究了沼水蛙鸣叫节律(17 d)及其与环境温度、相对湿度的关系。结果显示,沼水蛙的鸣声由1 ~ 4个音节组成,不同类型鸣声间的音节主频、音节时长存在显著差异(P < 0.05)。该物种全天具有鸣叫行为,13:00 ~ 14:00时为鸣叫高峰期。白天单音节鸣声、双音节鸣声、三音节鸣声、总鸣声和总音节的数量较夜晚显著增加(P < 0.01)。鸣声数量和音节数量均与环境温度呈正相关(P < 0.01)。结果表明,沼水蛙通过改变音节数量、音节主频和音节时长改变鸣叫策略。沼水蛙的鸣叫行为具有昼夜节律性且受环境温度的影响。  相似文献   

4.
繁殖性状替代(RCD)是指为减弱种间的繁殖干扰而产生的性状进化现象。重叠分布的物种通过繁殖性状的分化降低繁殖干扰,维持种间界线,是物种应对种间繁殖干扰的重要策略之一。无尾两栖类的求偶/择偶过程主要依赖声音通讯,本研究以声音通讯为手段研究背条螳臂树蛙Chiromantis doriae鸣声的RCD过程和机制。背条螳臂树蛙和侧条费树蛙Feihyla vittata分别属于树蛙科Rhacophoridae螳臂树蛙属Chiromantis和费树蛙属Feihyla,但二者形态特征相似、繁殖期重叠、鸣声频率接近、求偶信号彼此遮蔽,因此二者间存在一定程度的繁殖干扰。同域/异域背条螳臂树蛙的鸣声特征比较分析结果表明,背条螳臂树蛙的求偶鸣声包含4~8音节,对鸣声提取8项声音特征参数进行主成分分析,得到3个主成分。混合线性模型分析结果表明,反映时域特征及调频特征的主成分PC3在同域/异域分布的种群间的差异有统计学意义,而另2个主成分在同域/异域分布的种群间的差异无统计学意义。为比较同域/异域种群间的音节特征,对音节主频、音节时长和音节间隔3个参数进行混合线性模型分析,结果表明,音节主频和音节时长在同域/异域种群间的差异有统计学意义,音节间隔在同域/异域种群间的差异无统计学意义。总体而言,同域分布的背条螳臂树蛙鸣声频率更低、时长更长、调频更明显,有助于拉大与侧条费树蛙主频高、时长短的单音节鸣声间的差异。背条螳臂树蛙在鸣声特征上存在RCD现象,证明非近缘物种也可产生RCD,拓展了RCD的范围。  相似文献   

5.
声学通讯是动物对内外环境刺激的一种反应,对无尾两栖动物的配偶选择和成功繁殖起着关键作用。从声学通讯的类型和声谱特征等入手,综述了影响两栖动物声学通讯的3个主要因素:发声器、体内激素及体外激素水平。在此基础上,分析了激素调控无尾两栖动物声学通讯的作用机理,对无尾两栖动物声学通讯今后的研究方向进行了展望,并探讨了环境激素对其影响,以期为无尾两栖动物生殖生态环境的保护和恢复提供理论支撑。  相似文献   

6.
棘胸蛙求偶鸣声与温度有关但与体大小无关   总被引:1,自引:0,他引:1  
鸣声被认为是鉴别蛙类物种最有效的特征之一,但受许多因素影响。为了研究环境因素和身体大小与雄性棘胸蛙鸣声特征的关系,在人工仿生态养殖条件下测量环境温度和体温以及蛙体的大小(体重、体长),并通过个体定位,录制繁殖期中雄性棘胸蛙的求偶鸣声,分析鸣叫参数。结果表明,棘胸蛙雄性鸣声特征测量参数与体重、体长无相关性,而鸣声特征中的鸣叫时长、音节时长与环境温度、水温、体温、泄殖腔温度存在负相关性。研究结果提示在开展棘胸蛙鸣声学研究时应注意温度对其的影响。  相似文献   

7.
鸟类运动能力强,且对生境变化敏感,常作为环境指示物种。鸣声是鸟类重要的通讯方式,其特征具有物种特异性。随着野外录音及鸣声分析技术和设备的快速发展,从录音中自动提取反映鸣声特征的参数,快速评估鸟种多样性已成为可能。相比于传统的鸟类调查方法,通过录音监测鸟类,具有方便快捷的优点。对鸣声反映鸟类多样性的理论基础、常用的声音指数,以及该领域的关键技术加以介绍,为鸟类监测提供方法借鉴。  相似文献   

8.
大多数无尾两栖类的配偶选择依赖声音通讯。为吸引雌性,雄性可通过增加音节数量或鸣声复杂性的方式提升鸣声吸引力。工作记忆是指在进行复杂认知活动时对过去短时间内接收到的信息进行处理和储存的一种记忆程序。目前,大多数无尾两栖类鸣声通讯研究侧重于揭示鸣声信号的功能,但关于工作记忆对雌性配偶选择的影响及其在复杂求偶信号进化过程中的作用的研究十分匮乏。本研究以锯腿原指树蛙(Kurixalus odontotarsus)为实验对象,利用趋声性实验测试雌性对不同复杂程度鸣声信号的工作记忆。雄性锯腿原指树蛙的鸣声主要包含A音节("呱"音)和B音节("啾"音),两类音节可以组成不同复杂程度的鸣声,如简单的广告鸣叫5A、复杂的组合鸣叫5A2B和5A5B。实验过程中为雌蛙播放不同复杂程度的鸣声刺激对(5A vs. 5A2B及5A vs. 5A5B),然后进行不同时长安静处理(0 s、5 s、10 s、15 s和30 s)。若安静处理后大部分雌蛙仍选择之前播放复杂鸣声的音箱,则认为此次安静处理时长在雌性对复杂鸣声的工作记忆范围内。实验数据通过广义估计方程(GEE)和精确二项分布检验进行统计分析。研究结果表明,相较于5A,雌性对组合鸣叫5A2B的工作记忆大约有15 s,对5A5B的工作记忆大约有10 s;而组间比较结果表明,雌性对于5A2B和5A5B的工作记忆没有显著性差异。因此,本研究认为复杂鸣声信号会通过工作记忆影响雌性的行为决策,且工作记忆对复杂鸣声信号进化的影响可能具有物种特异性。  相似文献   

9.
本文在分析鹤科(Gruidae)鸟类鸣声特征的基础上,结合其分子系统树,重建了鸣声特征的演化,并检验了体重与鸣声特征及鸣声特征之间在演化上的相关性。同时比较了体重与鸣声特征在物种间的关系。演化支上各物种体重的变化与鸣声时长特征的变化存在显著的关联(对数线性模型,似然比=9.69,P=0.002;Cohen′s d=1.48):体重的增加伴随着鸣声时长的增加。鸣声特征之间在演化上没有显著的关联(对数线性模型,似然比≤0.15,P≥0.701;Cohen′s d≤0.17)。在物种间鸣声时长与体重存在显著的正相关(Pearson相关分析,r=0.54,P=0.048;Cohen′s d=1.27);鸣声的主频特征与体重存在显著的负相关(Pearson相关分析,r=﹣0.56,P=0.036;Cohen′s d=1.37)。本文以鹤科鸟类鸣声为例,分析了非鸣禽鸟类鸣声特征的演化,及影响鸣声特征的因素。  相似文献   

10.
鸣叫是无尾两栖类声音通讯的重要环节之一。许多蛙类的鸣叫行为具有节律性,且受温度和湿度的影响。为研究红蹼树蛙(Rhacophorus rhodopus)的鸣声特征和鸣叫节律,2016年5—6月,采用录音机和指向性话筒,在野外录制了61只雄性红蹼树蛙的鸣声,并通过悬挂录音笔和自动温湿度记录仪研究其鸣叫节律(22 d)。结果发现:红蹼树蛙的鸣声分为单音节和多音节(音节数2~20;平均6.27±2.94)2种类型。与多音节鸣声的主频(2213.32±106.95 Hz)、音节时长(14.83±1.27 ms)和音节间隔(60.66±8.56 ms)相比,单音节鸣声的主频(2289.87±120.14 Hz)、音节时长(16.93±1.68 ms)和音节间隔(610.99±178.48ms)显著升高(P0.05),而2种鸣声的基频(单音节鸣声:212.51±21.63 Hz;多音节鸣声:225.39±26.80 Hz)无显著差异(P0.05)。红蹼树蛙每晚19:00至次日03:00具有鸣叫行为,22:00为高峰期。结果表明:红蹼树蛙主要通过改变鸣声的主频、音节时长、音节间隔以及音节数提高声音通讯效率。红蹼树蛙的鸣叫行为具有昼夜节律,且在一定程度上受温度和湿度的影响。  相似文献   

11.
Acoustic signalling is the most important form of communication in anuran amphibians. Here we recorded and analysed the calls of 18 male Guenther’s frogs (Hylarana guentheri) from the wild during the breeding season. The advertisement calls of H. guentheri were composed of from a single note to five notes, with three-note calls the most recorded. All individuals produced calls around 600 Hz but calls ranged from 470 to 2600 Hz. Comparing the differences between individuals calls, we found within-male coefficients of variation (CVw) of call intensity, the fundamental frequency, the first formant, the second formant, the third formant and the fourth formant were static (less than 5% variation), whereas those of note duration, call duration, call interval, numbers of pulses and dominant frequency were dynamic (larger than 15% variation). Comparisons of the call characteristics of H. guentheri in this study with other studies from China, Singapore and Vietnam found call characteristics varied greatly between the five different locations.  相似文献   

12.
Anuran calls are usually species-specific and therefore valued as a tool for species identification. Call characteristics are a potential honest signal in sexual selection because they often reflect male body size. Polypedates megacephalus and P. mutus are two sympatric and morphologically similar tree frogs, but it remains unknown whether their calls are associated with body size. In this study, we compared call characteristics of these two species and investigated any potential relationships with body size. We found that P. megacephalus, males produced six call types which consisting of three distinct notes, while P. mutus males produced five types consisting of two types of notes. Dominant frequency, note duration, pulse duration, and call duration exhibited significant interspecific differences. In P. megacephalus, one note exhibited a dominant frequency that was negatively correlated with body mass, snout-vent length, head length, and head width. In P. mutus, the duration of one note type was positively correlated with body mass and head width. These differences in call characteristics may play an important role in interspecific recognition. Additionally, because interspecific acoustic variation reflects body size, calls may be relevant for sexual selection. Taken together, our results confirmed that calls are a valid tool for distinguishing between the two tree-frog species in the field.  相似文献   

13.
Anurans often have species-specific vocalizations. To quantify and compare the characteristics of anuran calls in Gutianshan National Nature Reserve, Zhejiang Province, we recorded the advertisement calls of eight species belonging to four families (Ranidae, Microhylidae, Megophryidae and Bufonidae) from June to September 2012 using Sony ICD-FX8 IC recorders. All recordings were analyzed using the "Praat" software. Five acoustics parameters were measured, including temporal traits (call duration, number of notes or pulse number/call) and spectral traits (fundamental frequency, the first three formants and dominant frequency). The characteristic parameters of Microhyla ornate and Fejervarya limnocharis calls were different as were the calls of some populations of the same species recorded in different regions. The advertisement calls of the eight species were specific. Our study has provided a useful reference for identifying the calls of some common Chinese anurans.  相似文献   

14.
Frogs are a representative taxon that use advertisement calls to aid in reproduction. In most frog species, calls vary with body size, and allometric constraints between body size and call frequency have been widely reported among anuran species. Although this variation is an important driver of sexual selection in frogs, male advertisement call strategies may also vary according to body size. In this study, we conducted playback experiments on the male forest green tree frog (Zhangixalus arboreus) to determine whether male advertisement call characteristics and strategies vary according to body size and the amplitude of intraspecific chorus noise. The results indicated that the calls of larger individuals are louder and lower than those of smaller ones, who call more frequently; moreover, the calls become lower, and the number of calls decreases, as noise levels increase. These findings suggest that forest green tree frog emits lower calls or refrains from calling when chorus noise increases, and that intraspecific variation in advertisement call characteristics can induce different strategies in response to chorus noise. Because advertisement call variation with body size is common among frog species, intraspecific variation in male advertisement call strategies may also be a common phenomenon.  相似文献   

15.
Many territorial species respond less aggressively to familiar neighbours than to unfamiliar floating strangers based on individual differences in acoustic signals. This form of social recognition, termed neighbour–stranger discrimination (NSD) or dear-enemy phenomenon has been reported so far from three anuran species. To investigate the potential of auditory signal features to convey information on sender's identity, we determined patterns of within-male and between-male variability in the advertisement call of the aromobatid frog Allobates femoralis . We examined 285 calls from 19 males to assess those call properties showing sufficient and reliable inter-individual differences to function as possible recognition cues. Beside calls per call bout and call rate, all other examined call properties were more variable among males than within males. Generally, temporal call features showed higher between- and within-male variability ratios than spectral properties and contributed mostly to distinguish individual males in the discriminant-function analysis. Mean classification success of 64.9% correctly assigned calls to individual males is mainly attributable to three temporal call properties (duration of note 1 and 4, note repetition rate). Altogether, our results suggest that there is sufficient variation in the advertisement call to discriminate statistically among individual males. However, assessed call differences between A. femoralis males were rather small, suggesting that potential NSD might be based either on a combination of call features or even on the whole pattern of individual call variation instead on single call properties. Habituation–discrimination experiments in the field using modified playback signals to test for differential behavioural responses are required to confirm this hypothesis.  相似文献   

16.
Male-male vocal competition is critical for mating success in anuran species; however, it remains unknown that how males regulate their competitive strategies dynamically during competition because calling is highly time-consuming, energetically demanding and likely to increase predation risks. Since different parts of calls will encode different information for vocal communication, we hypothesized that competitive strategies of male frogs may be modulated by the temporal and spectral features of different call notes. To test this hypothesis, the natural advertisement calls(OC), its modified versions with the first call note replaced by white noise(WN) or other notes and with the fifth call note replaced by WN, were played back to the Anhui tree frogs(Rhacophorus zhoukaiyae). Results showed that 1) males produced more competitive calls in response to acoustic stimuli compared to their baseline calling during silence; and 2) males emitted more non-overlapping calls compared to overlapping calls in response to the acoustic stimuli. These results are consistent with the idea that males are flexible to acoustic signals and their competition strategies are modulated dynamically by social contexts.  相似文献   

17.
We measured the auditory responses of the noctuid moth Noctua pronuba to bat echolocation calls which were manipulated independently in time and frequency. Such manipulations are important in understanding how insect hearing influences the evolution of echolocation call characteristics. We manipulated the calls of three bat species (Rhinolophus hipposideros, Myotis nattereri and Pipistrellus pipistrellus) that use different echolocation call features by doubling their duration or reducing their frequency, and measured the auditory thresholds from the A1 cells of the moths. Knowing the auditory responses of the moth we tested three predictions. (i) The ranking of the audibility of unmanipulated calls to the moths should be predictable from their temporal and/or frequency structure. This was supported. (ii) Doubling the duration of the calls should increase their audibility by ca. 3 dB for all species. Their audibility did indeed increase by 2.1-3.5 dB. (iii) Reducing the frequency of the calls would increase their audibility for all species. Reducing the frequency had small effects for the two bat species which used short duration (2.7-3.6 ms) calls. However, the relatively long-duration (50 ms), largely constant-frequency calls of R. hipposideros increased in audibility by 21.6 dB when their frequency was halved. Time and frequency changes influence the audibility of calls to tympanate moths in different ways according to call design. Large changes in frequency and time had relatively small changes on the audibility of calls for short, largely broadband calls. Channelling energy into the second harmonic of the call substantially decreased the audibility of calls for bats which use long-duration, constant-frequency components in echolocation calls. We discuss our findings in the contexts of the evolution of both bat echolocation call design and the potential responses of insects which hear ultrasound.  相似文献   

18.
Advertisement calls of Bolivian Leptodactylidae (Amphibia, Anura)   总被引:1,自引:0,他引:1  
R. Marquez    I. de la  Riva  J. Bosch 《Journal of Zoology》1995,237(2):313-336
  相似文献   

19.
Chick‐a‐dee calls of Poecile (chickadee) and Baeolophus (titmouse) species are complex in terms of the structural composition of note types and the diversity of messages. Studies so far have mainly focused on the calls of various chickadee and just one titmouse species—the tufted titmouse (B. bicolor). To begin to address this lack of titmouse data, our study investigated variation in note composition of calls of bridled titmice (B. wollweberi). We obtained calls from 26 flocks in the Chiricahua Mountains of Arizona in the overwintering flocking period. Bridled titmice produce proportionally more non‐combinatorial call variants than combinatorial call variants. The number of the single noted calls furthermore exceeded the number of multinote calls. In general, structural variation in the combinatorial calls appears to be comparable to calls of better‐studied chickadees and of tufted titmice, although bridled titmice appear to have a unique call length distribution. We also analyzed some behavioral associations with call variation and found that flight behavior and close interactions between individuals were associated with use of specific note types. Finally, we found microgeographic variation in note type use in these calls. We discuss some possible explanations for call complexity in this species.  相似文献   

20.
It is generally thought that for species using vocal communication the spectral properties of the sender’s calls should match the frequency sensitivity of the receiver’s auditory system. Nevertheless, few studies have investigated both sender and receiver characteristics in anuran species. In the present study, auditory brainstem responses (ABRs) were recorded in the serrate legged treefrog, Philautus odontotarsus, in order to determine if male call spectral structure and hearing sensitivity in males and females have co-evolved in this species. The results showed that the spectral structures of male vocalization match both male and female hearing sensitivity, even though the dominant frequencies of male calls (2.5 kHz) are mismatched with the regions of best frequency sensitivity (1.4 and 2.8 kHz). In addition, the results show that, in contrast with most previous ABR studies in non-human animals, but consistent with human studies, there are noticeable sex differences in peripheral auditory sensitivity in Philautus insofar as females exhibit lower auditory thresholds than males across the entire 1.8–18 kHz frequency range. The results also show that the dominant frequency of male calls is negatively correlated with body size, indicating that call characteristics reflect body size in this species which may be used by females during mate choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号