首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1367810篇
  免费   117290篇
  国内免费   764篇
  2021年   13473篇
  2019年   16107篇
  2018年   17914篇
  2017年   16800篇
  2016年   28122篇
  2015年   42267篇
  2014年   50301篇
  2013年   76418篇
  2012年   38059篇
  2011年   27256篇
  2010年   44152篇
  2009年   45313篇
  2008年   26021篇
  2007年   24184篇
  2006年   28961篇
  2005年   30092篇
  2004年   29291篇
  2003年   26691篇
  2002年   24643篇
  2001年   33302篇
  2000年   30712篇
  1999年   30297篇
  1998年   24088篇
  1997年   23978篇
  1996年   23352篇
  1995年   22885篇
  1994年   22696篇
  1993年   21773篇
  1992年   27194篇
  1991年   25784篇
  1990年   24466篇
  1989年   25169篇
  1988年   23417篇
  1987年   22320篇
  1986年   21144篇
  1985年   23040篇
  1984年   22808篇
  1983年   20172篇
  1982年   20596篇
  1981年   19779篇
  1980年   18528篇
  1979年   19010篇
  1978年   17847篇
  1977年   17139篇
  1976年   16414篇
  1975年   15980篇
  1974年   16628篇
  1973年   16952篇
  1972年   14539篇
  1971年   13326篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.  相似文献   
2.
Unlike other antiapoptotic Bcl-2 family members, Mcl-1 also mediates resistance to cancer therapy by uniquely inhibiting chemotherapy-induced senescence (CIS). In general, Bcl-2 family members regulate apoptosis at the level of the mitochondria through a common prosurvival binding groove. Through mutagenesis, we determined that Mcl-1 can inhibit CIS even in the absence of its apoptotically important mitochondrion-localizing domains. This finding prompted us to generate a series of Mcl-1 deletion mutants from both the N and C termini of the protein, including one that contained a deletion of all of the Bcl-2 homology domains, none of which impacted anti-CIS capabilities. Through subsequent structure-function analyses of Mcl-1, we identified a previously uncharacterized loop domain responsible for the anti-CIS activity of Mcl-1. The importance of the loop domain was confirmed in multiple tumor types, two in vivo models of senescence, and by demonstrating that a peptide mimetic of the loop domain can effectively inhibit the anti-CIS function of Mcl-1. The results from our studies appear to be highly translatable because we discerned an inverse relationship between the expression of Mcl-1 and of various senescence markers in cancerous human tissues. In summary, our findings regarding the unique structural properties of Mcl-1 provide new approaches for targeted cancer therapy.  相似文献   
3.
Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations'' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.  相似文献   
4.
Richard A. Gill 《Plant and Soil》2014,374(1-2):197-210

Background and aims

Drivers of ecosystem dynamics that are under human influence range from local, land-management decisions to global processes such as warming temperatures and N deposition. The goal of this study was to understand how multiple, potentially interacting factors influence net primary production, N mineralization, and water and soil CO2 fluxes.

Methods

Here I report on a three-year experiment that manipulated air temperature using ITEX passive warming cones and N deposition in a mountain meadow ecosystems that were historically grazed or protected from grazing.

Results

The strongest and most consistent effect was due to the legacy of grazing, with previously grazed sites having lower primary production, lower soil respiration rates, lower soil moisture, and lower soil C and N stocks than historically ungrazed sites. Warming increased soil respiration, but the effect was transient, and decreased over the 3-year study. Nitrogen addition increased primary production in the second and third year of the experiment but had no significant effect on soil respiration. The effect of historical grazing on primary production was approximately double the effect of N addition. Temperature and N deposition rarely interacted except for increasing N availability during the warm, wet growing season of 2004.

Conclusions

These findings indicate that the legacies of land use, with their influence on plant community composition and hydrologic processes, are locally more important than short-term step changes in temperature and nutrient availability.  相似文献   
5.

Aims

This study investigated Cu uptake and accumulation as well as physiological and biochemical changes in grapevines grown in soils containing excess Cu.

Methods

The grapevines were collected during two productive cycles from three vineyards with increasing concentrations of Cu in the soil and at various growth stages, before and after the application of Cu-based fungicides. The Cu concentrations in the grapevine organs and the macronutrients and biochemical parameters in the leaf blades were analyzed.

Results

At close to the flowering stage of the grapevines, the concentration and content of Cu in the leaves were increased. However, the Cu concentrations in the roots, stem, shoots and bunches did not correlate with the metal concentrations in the soil. The application of Cu-based fungicides to the leaves increased the Cu concentrations in the shoots, leaves and rachis; however, the effect of the fungicides on the Cu concentration in the berries was not significant. The biochemical analyses of the leaf blades demonstrated symptoms of oxidative stress that correlated with the Cu concentrations in soil.

Conclusions

The increased availability of Cu in soil had a slight effect on the levels and accumulation of Cu in mature grapevines during the productive season and did not alter the nutritional status of the plant. However, increased Cu concentrations were observed in the leaves. The evidence of oxidative stress in the leaves correlated with the increased levels of Cu in soil.  相似文献   
6.

Aims

The mechanisms underlying magnesium (Mg) uptake by plant roots remain to be fully elucidated. In particular, there is little information about the effects of Mg deficiency on Mg uptake activity. A Mg uptake kinetic study is essential for better understanding the Mg uptake system.

Methods

We performed a Mg uptake tracer experiment in rice plants using 28?Mg.

Results

Mg uptake was mediated by high- and low-affinity transport systems. The K m value of the high-affinity transport system was approximately 70 μM under Mg-deficient conditions. The Mg uptake activity was promoted by Mg deficiency, which in turn fell to the basal level after 5- min of Mg resupply. The induced uptake rate was inhibited by ionophore treatment, suggesting that an energy-dependent uptake system is enhanced by Mg deficiency.

Conclusions

The Mg uptake changes rapidly with Mg conditions in rice, as revealed by a 28?Mg tracer experiment. This technique is expected to be applicable for Mg uptake analyses, particularly in mutants or other lines.
  相似文献   
7.
8.
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.As leaves open their stomata to capture CO2 for photosynthesis, water is lost to transpiration, which needs to be replaced by flow through the hydraulic system. The leaf hydraulic system has two components, which act essentially in series: the pathways for water movement through the xylem from the petiole to leaf minor veins, and those through the living bundle sheath and mesophyll cells to the sites of evaporation (Tyree and Zimmermann, 2002; Sack et al., 2004; Sack and Holbrook, 2006). The decline in leaf hydraulic conductance (Kleaf) with dehydration may thus depend on both components. The importance of the xylem component is well established. Vein xylem embolism and cell collapse have been observed in dehydrating leaves (Salleo et al., 2001; Cochard et al., 2004a; Johnson et al., 2009), and computer modeling and experimental work showed that species with high major vein length per leaf area (VLA; i.e. for the first three vein-branching orders) were more resistant to hydraulic decline, providing more pathways around embolisms (Scoffoni et al., 2011). However, the physical impacts of dehydration on the extraxylem pathways have not been studied, even though in turgid leaves these pathways account for 26% to 88% of leaf hydraulic resistance (i.e. of 1/Kleaf), depending on species (Sack et al., 2003a; Cochard et al., 2004b). The aim of this study was to determine whether leaf shrinkage during dehydration relates to the decline of Kleaf as well as the structural determinants of leaf shrinkage.The shrinkage of leaves with dehydration has drawn attention for over 100 years. Leaves shrink in their area (Bogue, 1892; Gardner and Ehlig, 1965; Jones, 1973; Tang and Boyer, 2007; Blonder et al., 2012) and, considered in relative terms, even more strongly in their thickness (Fig. 1; Meidner, 1952; Gardner and Ehlig, 1965; Downey and Miller, 1971; Syvertsen and Levy, 1982; Saini and Rathore, 1983; Burquez, 1987; McBurney, 1992; Sancho-Knapik et al., 2010, 2011). Leaves fluctuate in thickness daily and seasonally according to transpiration (Kadoya et al., 1975; Tyree and Cameron, 1977; Fensom and Donald, 1982; Rozema et al., 1987; Ogaya and Peñuelas, 2006; Seelig et al., 2012). Indeed, the relation of leaf thickness to water status is so tight that using leaf thickness to guide irrigation has led to water savings of up to 45% (Seelig et al., 2012).Open in a separate windowFigure 1.Sketches of a fully turgid leaf (A) versus a strongly dehydrated leaf (B; drawings based on leaf cross sections of sunflower in Fellows and Boyer, 1978). Note the strong reduction in leaf thickness, cell thickness, and intercellular airspaces in the dehydrated leaf. Epidermal cells are shrunk in the dehydrated leaf, inducing whole-leaf area shrinkage. Note that this sketch represents shrinkage for a typical drought-sensitive species. Many species such as oaks (Quercus spp.) will experience less thickness shrinkage and an increase in intercellular airspace (see “Discussion”). [See online article for color version of this figure.]Previous studies of leaf shrinkage with progressive dehydration have tended to focus on single or few species. These studies showed that thickness declines with water status in two phases. Before the bulk leaf turgor loss point (TLP; leaf water potential [Ψleaf] at TLP) is reached, the slope of leaf thickness versus Ψleaf or relative water content (RWC) is shallower than past TLP for most species (Meidner, 1955, Kennedy and Booth, 1958, Burquez, 1987, McBurney, 1992, Sancho-Knapik et al., 2010, 2011). This is because before TLP, declining Ψleaf is strongly driven by declines in turgor pressure, which have a relatively low impact on cell and airspace volume, whereas past the TLP, declining Ψleaf depends only on solute concentration, which increases in inverse proportion as cell water volume declines while airspaces may shrink or expand (Tyree and Hammel, 1972, Sancho-Knapik et al., 2011). However, the steepness of the slope of leaf thickness versus Ψleaf before TLP seems to vary strongly across species (Meidner, 1955; Kennedy and Booth, 1958; Fellows and Boyer, 1978; Burquez, 1987; Colpitts and Coleman, 1997; Sancho-Knapik et al., 2010).A high leaf cell volume and turgor is crucial to physiological processes (Boyer, 1968; Lawlor and Cornic, 2002). Shrinkage may affect cell connectivity and water transport (Sancho-Knapik et al., 2011). However, no studies have tested for a possible relationship of leaf shrinkage with the decline of Kleaf during dehydration. Such an association would arise if, across species, shrinkage occurred simultaneously with vein xylem embolism or if tissue shrinkage led to declines in the extraxylem hydraulic conductance.To refine our hypotheses, we modified a computer model of the leaf hydraulic system (Cochard et al., 2004b; McKown et al., 2010; Scoffoni et al., 2011) to predict the impact of losses of xylem and extraxylem conductance on the response of Kleaf to dehydration. We characterized the degree of leaf shrinkage in thickness, in the thickness of cells and airspaces within the leaf, and in leaf area for 14 species diverse in phylogeny, leaf traits, and drought tolerance. We hypothesized that loss of extraxylem hydraulic conductance should have a greater impact on Kleaf at less negative water potentials when xylem tensions are too weak to trigger embolism and induce dramatic declines in Kleaf. We hypothesized that species with greater degrees of shrinkage before TLP would experience greater loss of Kleaf. Furthermore, we hypothesized that species from moist habitats would have greater degrees of shrinkage.For insight into the mechanisms and consequences of leaf shrinkage, we also investigated the relationships of 18 indices of leaf shrinkage with a wide range of aspects of leaf structure and composition, including gross morphology, leaf venation architecture, parameters of pressure-volume curves, and leaf water storage. We hypothesized that, across species, shrinkage in whole leaf, cell, and intercellular airspace thickness would be lower for species with greater allocation to structural rigidity and osmotic concentration, and thus shrinkage would be positively correlated with a lower modulus of elasticity (ε), less negative osmotic pressure at full turgor (πo), lower leaf mass per area (LMA), and lower leaf density. Additionally, we tested the longstanding hypothesis that species with higher major VLA and/or minor VLA (i.e. the fourth and higher vein-branching orders) would shrink less in area and/or thickness with dehydration (Gardner and Ehlig, 1965). Finally, we tested the ability of dehydrated leaves to recover in size with rehydration. We hypothesized that recovery would be greater for mildly than for strongly dehydrated leaves and that species with greater leaf shrinkage would be better able to recover from shrinkage.  相似文献   
9.
Unequal absorption of photons between photosystems I and II, and between bundle-sheath and mesophyll cells, are likely to affect the efficiency of the CO2-concentrating mechanism in C4 plants. Under steady-state conditions, it is expected that the biochemical distribution of energy (ATP and NADPH) and photosynthetic metabolite concentrations will adjust to maintain the efficiency of C4 photosynthesis through the coordination of the C3 (Calvin-Benson-Bassham) and C4 (CO2 pump) cycles. However, under transient conditions, changes in light quality will likely alter the coordination of the C3 and C4 cycles, influencing rates of CO2 assimilation and decreasing the efficiency of the CO2-concentrating mechanism. To test these hypotheses, we measured leaf gas exchange, leaf discrimination, chlorophyll fluorescence, electrochromatic shift, photosynthetic metabolite pools, and chloroplast movement in maize (Zea mays) and Miscanthus × giganteus following transitional changes in light quality. In both species, the rate of net CO2 assimilation responded quickly to changes in light treatments, with lower rates of net CO2 assimilation under blue light compared with red, green, and blue light, red light, and green light. Under steady state, the efficiency of CO2-concentrating mechanisms was similar; however, transient changes affected the coordination of C3 and C4 cycles in M. giganteus but to a lesser extent in maize. The species differences in the ability to coordinate the activities of C3 and C4 cycles appear to be related to differences in the response of cyclic electron flux around photosystem I and potentially chloroplast rearrangement in response to changes in light quality.The CO2-concentrating mechanism in C4 plants reduces the carbon lost through the photorespiratory pathway by limiting the oxygenation of ribulose-1,5-bisphosphate (RuBP) by the enzyme Rubisco (Brown and Smith, 1972; Sage, 1999). Through the compartmentalization of the C4 cycle in the mesophyll cells and the C3 cycle in the bundle-sheath cells (Hatch and Slack, 1966), C4 plants suppress RuBP oxygenation by generating a high CO2 partial pressure around Rubisco (Furbank and Hatch, 1987). To maintain high photosynthetic rates and efficient light energy utilization, the metabolic flux through the C3 and C4 cycles must be coordinated. However, coordination of the C3 and C4 cycles is likely disrupted due to rapid changes in environmental conditions, particularly changes in light availability (Evans et al., 2007; Tazoe et al., 2008).Spatial and temporal variations in light environments, including both light quantity and quality, are expected to alter the coordination of the C3 and C4 cycles. For example, it has been suggested that the coordination of C3 and C4 cycles is altered by changes in light intensity (Henderson et al., 1992; Cousins et al., 2006; Tazoe et al., 2006, 2008; Kromdijk et al., 2008, 2010; Pengelly et al., 2010). However, more recent publications indicate that some of the proposed light sensitivity of the CO2-concentrating mechanisms in C4 plants can be attributed to oversimplifications of leaf models of carbon isotope discrimination (Δ13C), in particular, errors in estimates of bundle-sheath CO2 partial pressure and omissions of respiratory fractionation (Ubierna et al., 2011, 2013). Alternatively, there is little information on the effects of light quality on the coordination of C3 and C4 cycle activities and the subsequent impact on net rate of CO2 assimilation (Anet).In C3 plants, Anet is reduced under blue light compared with red or green light (Evans and Vogelmann, 2003; Loreto et al., 2009). This was attributed to differences in absorbance and wavelength-dependent differences in light penetration into leaves, where red and green light penetrate farther into leaves compared with blue light (Vogelmann and Evans, 2002; Evans and Vogelmann, 2003). Differences in light quality penetration into a leaf are likely to have profound impacts on C4 photosynthesis, because the C4 photosynthetic pathway requires the metabolic coordination of the mesophyll C4 cycle and the bundle-sheath C3 cycle. Indeed, Evans et al. (2007) observed a 50% reduction in the rate of CO2 assimilation in Flaveria bidentis under blue light relative to white light at a light intensity of 350 µmol quanta m−2 s−1. This was attributed to poor penetration of blue light into the bundle-sheath cells and subsequent insufficient production of ATP in the bundle-sheath cells to match the rates of mesophyll cell CO2 pumping (Evans et al., 2007). Recently, Sun et al. (2012) observed similar low rates of steady-state CO2 assimilation under blue light relative to red, green, and blue light (RGB), red light, and green light at a constant light intensity of 900 µmol quanta m−2 s−1.Because the light penetration into a leaf depends on light quality, with blue light penetrating the least, this potentially results in changes in the energy available for carboxylation reactions in the bundle-sheath (C3 cycle) and mesophyll (C4 cycle) cells. Changes in the balance of energy driving the C3 and C4 cycles can alter the efficiency of the CO2-concentrating mechanisms, often represented by leakiness (ϕ), the fraction of CO2 that is pumped into the bundle-sheath cells that subsequently leaks back out (Evans et al., 2007). Unfortunately, ϕ cannot be measured directly, but it can be estimated through the combined measured and modeled values of Δ13C (Farquhar, 1983). Using measurements of Δ13C, it has been demonstrated that under steady-state conditions, changes in light quality do not affect ϕ (Sun et al., 2012); however, it remains unknown if ϕ is also constant during the transitions between different light qualities. In fact, sudden changes of light quality could temporally alter the coordination of the C3 and C4 cycles.To understand the effects of light quality on C4 photosynthesis and the coordination of the activities of C3 and C4 cycles, we measured transitional changes in leaf gas exchange and Δ13C under RGB and broad-spectrum red, green, and blue light in the NADP-malic enzyme C4 plants maize (Zea mays) and Miscanthus × giganteus. Leaf gas exchange and Δ13C measurements were used to estimate ϕ using the complete model of C4 leaf Δ13C (Farquhar, 1983; Farquhar and Cernusak, 2012). Additionally, we measured photosynthetic metabolite pools, Rubisco activation state, chloroplast movement, and rates of linear versus cyclic electron flow during rapid transitions from red to blue light and blue to red light. We hypothesized that the limited penetration of blue light into the leaf would result in insufficient production of ATP in the bundle-sheath cells to match the rate of mesophyll cell CO2 pumping. We predicted that rapid changes in light quality would affect the coordination of the C3 and C4 cycles and cause an increase in ϕ, but this would equilibrate as leaf metabolism reached a new steady-state condition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号