首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
普通野生稻和亚洲栽培稻线粒体DNA的RFPL分析   总被引:6,自引:0,他引:6  
通过7个探针、17种内切酶探针组合对118份普通野生稻和76份亚洲栽培稻的线粒体DNA(mtDNA)RFLP分析表明,籼粳分化是亚洲栽培稻线粒体基因组分的主流,76个栽培稻中,36个品种mtDNA为籼型,40个品种mtDNA为粳型。普通野生稻mtDNA以籼型为主(86份),粳型较少(7份),1份类型难以确定,还有24份没有籼粳分化。  相似文献   

2.
中国普通野生稻遗传分化的RAPD研究   总被引:18,自引:0,他引:18  
多数学者已认定亚洲栽培稻(OryzasativaL.)的祖先是普通野生稻(O.rufipogon)。然而栽培稻的籼、粳分化是发生在驯化之前还是在驯化之后,也即普通野生稻是否存在籼、粳分化的问题,是十几年来稻作起源研究中争论的热点之一。Second[1]用多个同工酶位点的分析结果得出结论,普通野生稻在驯化为栽培稻之前就已经发生了籼、粳分化,即有籼型普通野生稻和粳型普通野生稻之分。Morishima和Gadrinab[2]用24个形态和生理性状及12个同工酶位点和杂交亲合力等方法证明普通野生稻没有发…  相似文献   

3.
亚洲栽培稻的祖先是普通野生稻,已成为世界公认的观点,然而亚洲栽培稻的2个亚种:粳稻和籼稻是一次起源还是二次起源仍存在很大争议,其起源地是国内还是国外依然是国际学者间争论的焦点。本文通过对184份亚洲栽培稻和203份普通野生稻3段基因序列cox3、cox1、orf 224和2段基因间序列ssv-39/178、rps2-trnfM的多样性研究,验证了以下观点:1)粳稻起源于中国,籼稻起源于中国和国外;2)亚洲栽培稻的起源为二次起源,即普通野生稻存在偏籼和偏粳2种类型,亚洲栽培稻的2个亚种籼稻和粳稻在进化过程中分别由偏籼型的普通野生稻和偏粳型的普通野生稻进化而来。  相似文献   

4.
水稻同工酶基因多样性及非随机组合现象的研究   总被引:9,自引:1,他引:8  
孙新立  才宏伟 《遗传学报》1996,23(4):276-285
通过对680份栽培稻、88份中国纯合普通野生稻的同工酶基因多样性和非随机组合现象的研究发现:(1)籼稻的多样性大于粳稻,对中国而言,普通野生稻大于籼稻,籼稻大于粳稻。(2)东南亚品种的非随机组合值很低,分化较低。基因多样性(H)、基因型频率(F)很高,是一个多样性中心。(3)南亚品种多样性和东南亚差不多,非随机组合值偏低,分化较差。但Aus稻多样性很小,非随机组合值较高,分化较彻底。(4)除中国云南以外的中国其它品种籼粳分化最彻底,多样性很小。中国云南粳稻多样最小,籼稻多样性近中,非随机组合值和中国的其它品种接近,从同工酶上看,中国云南不像是一个多样性中心。但发现和Est-2座位相关的非随机组合值很低。(5)籼粳交后代材料非随机组合值低,多样性偏高,推测籼粳交在水稻籼粳分化过程中起着很大的作用,有降低分化程度,增加多样性的作用。(6)中国普通野生稻非随机组合值很小,多数座位间不显著。可见,野生稻的分化是很小的。(7)广亲和品种与Est-2相关的非随机组合值很低,全部不显著,但其余的组合都较高。与中国云南品种的非随机组合值结果十分类似。  相似文献   

5.
针对目前亚洲栽培稻起源地和进化途径学说众多、分歧巨大的现状,本研究选择原产中国的98份亚洲栽培稻和125份普通野生稻为材料,对叶绿体中atpA序列、rps16内含子序列、trnP-rpl33间隔区、trnG-trnfM序列、trnT-trnL间隔区序列的五段高突变序列进行测序,利用生物信息学方法进行比对分析,绘制Network网络图,构建系统发育树。结果表明,普通野生稻的Indel和SNP数目均比亚洲栽培稻多,序列多样性丰富;基于单倍型的Network网络图和系统发育树可将所有参试材料归为3个类群,类群I主要为粳稻与普通野生稻,类群II主要为籼稻,类群III主要为普通野生稻,而类群II和类群III亲缘关系较近,提示粳、籼两个亚种可能由偏粳、偏籼的普通野生稻分别进化而来,支持二次起源学说;所有与亚洲栽培稻亲缘关系较近的普通野生稻均来源于华南地区,支持华南地区为我国亚洲栽培稻起源中心的论点。  相似文献   

6.
海南黎族聚居区山栏稻的起源演化研究   总被引:2,自引:0,他引:2  
以14份海南黎族聚居区的山栏稻为研究材料、以原产于中国的69份亚洲栽培稻和110份普通野生稻为对照组,分别对核中SSⅡ基因、ITS基因和Ehd1基因、叶绿体中ndhC-trnV基因以及线粒体中cox3基因等5段序列进行测序,分析基因序列多样性和单倍型,并揭示海南黎族聚居区山栏稻的起源地和驯化过程。结果表明,黎族聚居区山栏稻的基因多样性低于亚洲栽培稻,而亚洲栽培稻的基因多样性低于普通野生稻;85%左右的山栏稻为偏粳型;山栏稻与广东和湖南的普通野生稻亲缘关系较近,而与海南的普通野生稻的亲缘关系较远,推测黎族的山栏稻可能起源于广东和湖南的普通野生稻。  相似文献   

7.
从可交配性和F1杂种育性两方面对亚洲栽培稻与AA染色体组(以下简称AA组)其他7个稻种的系统关系进行了分析。结果表明:栽培稻籼、粳亚种与AA组不同稻种杂交均具有一定的结实率,可交配性不是影响亚洲栽培稻与其他AA组稻种间基因交流的主要生殖障碍。亚洲栽培稻与普通野生稻及尼瓦拉野生稻种间F1花粉育性和小穗育性有不同程度分化,与其他稻种的F1花粉育性和小穗育性均很低,F1杂种不育是AA组内基因交流的主要障碍。综合可交配性和F1小穗育性两方面的因素,初步得出:亚洲栽培稻与AA组稻种的亲缘关系由近及远依次是:普通野生稻、尼瓦拉野生稻、南方野生稻、展颖野生稻、非洲栽培稻、长雄蕊野生稻和短舌野生稻。其中普通野生稻和尼瓦拉野生稻是AA组中可直接利用于水稻育种的野生稻资源。  相似文献   

8.
本研究利用36对InDel分子标记引物对贵州地方水稻种质的籼-粳遗传分化和亲缘关系进行分析,结果表明,82份贵州地方栽培稻中49份为粳稻,33份为籼稻,贵州地方栽培稻“禾”品种主要属于粳稻,而“谷”品种主要为籼稻。基于Nei氏遗传距离的亲缘关系分析表明在粳稻群体和籼稻群体中均存在与野生稻亲缘关系近的品种,其中的粳稻品种与野生稻的遗传关系比之籼稻品种近。而基于MCMC算法的遗传结构分析揭示了贵州地方籼稻品种中存在较为复杂的遗传结构。分子变异分析显示,粳稻和籼稻品种的遗传变异主要来自亚种内,遗传多样性分析表明其亚种内籼稻品种的遗传多样性略高于粳稻品种。研究结果揭示了贵州省黔东南地区栽培稻种质资源的籼-粳分化程度、遗传关系及其遗传多样性。  相似文献   

9.
从籼稻“窄叶青”中克隆到了1个重复序列(pOs139)。经分子杂交证明,pOs139为一稻属内AA基因组特异的串联重复序列。序列分析表明,pOs139以355bp为一重复单位。以pOs139为探针对29份中国普通野生稻和43份中国栽培稻的基因组DNA进行的分子杂交表现,籼、粳亚种之间具有明显的差异,籼稻杂交带数明显多于粳稻,普通野生稻与籼稻相似,具有较多的杂交带数。拷贝数测定结果表明,pOs139  相似文献   

10.
从籼稻(OryzasativaL.spp.indica)“窄叶青”中克隆到了1个重复序列(pOs139)。经分子杂交证明,pOs139为一稻属内AA基因组特异的串联重复序列。序列分析表明,pOs139以355bp为一重复单位。以pOs139为探针对29份中国普通野生稻和43份中国栽培稻的基因组DNA进行的分子杂交表明,籼、粳亚种之间具有明显的差异,籼稻杂交带数明显多于粳稻,普通野生稻与籼稻相似,具有较多的杂交带数。拷贝数测定结果表明,pOs139在普通野生稻和籼稻中丰度均较高,在粳稻中丰度较低。结合pOs139的Southern杂交结果和以前的RAPD结果,认为籼稻和粳稻共同起源于普通野生稻。  相似文献   

11.
普遍野生稻和亚洲栽培稻遗传多样性的研究   总被引:2,自引:0,他引:2  
用 44个 RFLP标记对来自中国、印度、泰国等亚洲 10个国家的普通野生稻(简称普野,下同)和来自多个国家的75个栽培稻品种,从多态位点的比率、等位基因数、基因型数、平均杂合度及平均基因多样性等多个方面,比较了不同国家和不同地区的普通野生稻、栽培稻籼粳亚种及栽培稻与普野之间遗传多样性的差异。结果表明:中国普野的遗传多样性最大;其次是印度普野;南亚普野的平均基因多样性大于东南亚普野,而多态位点的比率、等位基因数及基因型数等却低于东南亚普野;栽培稻的遗传多样性明显小于普通野生稻。在所检测的44个位点中,栽培稻的多态位点数仅为野生稻的3/4,等位基因数约为野生稻的60%,基因型种类约为野生稻的1/2。栽培稻中籼稻的遗传多样性高于粳稻。在平均每个位点的实际杂合度上,以中国普野杂合度最高,普通野生稻是栽培稻的2倍。说明从野生稻演化成栽培稻的过程中,经过自然选择和人工选择,杂合度降低,等位基因减少,基因多样性下降。  相似文献   

12.
It is generally accepted that Oryza rufipogon is the progenitor of Asian cultivated rice (O. sativa). However, how the two subspecies of O. sativa (indica and japonica) were domesticated has long been debated. To investigate the genetic differentiation in O. rufipogon in relation to the domestication of O. sativa, we developed 57 subspecies-specific intron length polymorphism (SSILP) markers by comparison between 10 indica cultivars and 10 japonica cultivars and defined a standard indica rice and a standard japonica rice based on these SSILP markers. Using these SSILP markers to genotype 73 O. rufipogon accessions, we found that the indica alleles and japonica alleles of the SSILP markers were predominant in the O. rufipogon accessions, suggesting that SSILPs were highly conserved during the evolution of O. sativa. Cluster analysis based on these markers yielded a dendrogram consisting of two distinct groups: one group (Group I) comprises all the O. rufipogon accesions from tropical (South and Southeast) Asia as well as the standard indica rice; the other group (Group II) comprises all the O. rufipogon accessions from Southern China as well as the standard japonica rice. Further analysis showed that the two groups have significantly higher frequencies of indica alleles and japonica alleles, respectively. These results support the hypothesis that indica rice and japonica rice were domesticated from the O. rufipogon of tropical Asia and from that of Southern China, respectively, and suggest that the indica-japonica differentiation should have formed in O. rufipogon long before the beginning of domestication. Furthermore, with an O. glaberrima accession as an outgroup, it is suggested that the indica-japonica differentiation in O. ruffpogon might occur after its speciation from other AA-genome species.  相似文献   

13.
Repetitive DNA sequences are useful molecular markers for studying plant genome evolution and species diversity. The authors report the isolation and characterization of repetitive DNA sequences (pOs139) from Oryza sativa cuhivars "Zhaiyeqing". By Southern blot analysis, the authors discovered that pOs139 sequences were organized not only tandemly, but also highly specifc for the AA genome of Oryza genus. Sequence analysis revealed that the clone pOs139 contains a 355 bp repetitive unit. The genomic DNA of 29 Chinese common wild accessions, and 43 cultivated rice accessions, were analyzed by Southern blot with pOs139 as a probe. The results illustrated that there was significant difference in hybridization patterns between japonica and indica subspecies. Hybridization bands of indica subspecies were much more than those of japonica, and the Chinese common wild rice was similar to indica in hybridization patterns. The copy number estimated by dot blot hybridization analysis indicated that a considerable degree of variation existed among different accessions of O. sativa and the Chinese common wild rice. It is interesting to note that japonica subspecies contains relatively low copy numbers of pOs139-related repetitive DNA sequences, while the indica and Chinese common wild rice contain relatively high copy numbers.  相似文献   

14.
The genetic differentiation of nuclear, mitochondrial (mt) and chloroplast (cp) genomes was investigated by Southern and PCR analysis using 75 varieties of cultivated rice ( Oryza sativa L.) and 118 strains of common wild rice (CWR, Oryza rufipogon Griff.) from ten countries of Asia. The distinguishing differences between the Indica and Japonica cultivars were detected both in the nuclear genome and the cytoplasmic genome, confirming that the Indica-Japonica differentiation is of major importance for the three different classes of genome in cultivated rice. This differentiation was also detected in common wild rice with some differences among the genome compartments and the various regions. For nuclear DNA variation, both Indica-like and Japonica-like types were observed in the Chinese CWR, with the latter more-frequent than the former. No Japonica-like type was found in South Asia, and only two strains of the Japonica-like type were detected in Southeast Asia, thus the Indica-like type is the major type among South and Southeast Asian CWR. For mtDNA, only a few strains of the Japonica-like type were detected in CWR. For cpDNA, the Japonica type was predominant among the CWR strains from China, Bangladesh and Burma, while the Indica type was predominant among the CWR strains from Thailand, Malaysia, Cambodia and Sri Lanka, and both types were found in similar frequencies among the Indian CWR. Altogether, however, the degree of Indica-Japonica differentiation in common wild rice was much-less important than that in cultivated rice. Cluster analyses for nuclear and mitochondrial DNA variation revealed that some CWR strains showed large genetic distances from cultivated rice and formed clusters distinct from cultivated rice. Coincidence in the genetic differentiation between the three different classes of genome was much higher in cultivated rice than in CWR. Among the 75 cultivars, about 3/4 entries were "homoeotype" showing congruent results for nuclear, mt and cpDNA regarding the Indica-Japonica differentiation. In CWR, the proportions of homoeotypes were 5.7%, 15% and 48.8% in China, South Asia and Southeast Asia, respectively. Based on the average genetic distance among all the strains of CWR and cultivated rice for nuclear and mitochondrial genomes, the variability of the nuclear genome was found to be higher than that of the mitochondrial genome. The global pattern based on all genomes shows much-more diversification in CWR than that in cultivated rice.  相似文献   

15.
Ninety accessions which included Chinese common wild rice (Oryza rufipogon) from 8 provinces and traditional cultivars from lower and middle basins of Yangtze River, southeast of China and Yunnan Province as well as some commercial varieties were analyzed by RAPD with 24 primers. A scattered figure suggesting the indica-japonica and wild-domestication differentiations among 90 rice accessions was generated based on RAPD data. The results indicated that Chinese common wild rice, indica and japonica accessions were divided into 3 groups respectively. Chinese common wild rice were somewhat closer to the japonica type than the indica type.  相似文献   

16.
Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.  相似文献   

17.
Red rice is an interfertiie, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the cropin the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America andthe weed has been proposed to have evolved through multiple mechanisms, including "de-domestication" of UScrop cultivars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedyOryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traitswith the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity haveindicated that many weed strains are closely related to Asian taxa (including indica and aus rice varieties, whichhave never been cultivated in the US, and the Asian crop progenitor O. rufipogon), whereas others show geneticsimilarity to the tropical japonica varieties cultivated in the southern US. Herein, we review what is known aboutthe evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to furthercharacterize the evolutionary genomics of this aggressive weed.  相似文献   

18.
Yunnan, in Southwest China, has long been recognized as part of a center of diversity for Asia cultivated rice (Oryza sativa L. ). The authors surveyed DNA restriction fragment length polymorphisms (RFLPs) in a sample of 87 accessions from Yunnan indigenous rice with 7 single copy probes. The results ihdicated that both indica and japonica rice are genetically highly diverse. The number of alleles and the level of genic diversity in japonica rice were higher than those in indica rice. The results also showed that indica and japonica rices were clearly differentiated and the extent of differentiation varies with chromosomal regions as represented by the RFLP markers. Authors' results appeared to be in favor of the diphyletic hypothesis concerning the origin of cultivated rice.  相似文献   

19.
Extraordinarily polymorphic ribosomal DNA in wild and cultivated rice.   总被引:1,自引:0,他引:1  
K D Liu  Q Zhang  G P Yang  M A Maroof  S H Zhu  X M Wang 《Génome》1996,39(6):1109-1116
A collection of 481 rice accessions was surveyed for ribosomal DNA (rDNA) intergenic spacer length polymorphism to assess the extent of genetic diversity in Chinese and Asian rice germplasm. The materials included 83 accessions of common wild rice, Oryza rufipogon, 75 of which were from China; 348 entries of cultivated rice (Oryza sativa), representing almost all the rice growing areas in China; and 50 cultivars from South and East Asia. A total of 42 spacer length variants (SLVs) were detected. The size differences between adjacent SLVs in the series were very heterogeneous, ranging from ca. 21 to 311 bp. The 42 SLVs formed 80 different rDNA phenotypic combinations. Wild rice displayed a much greater number of rDNA SLVs than cultivated rice, while cultivated rice showed a larger number of rDNA phenotypes. Indica and japonica groups of O. sativa contained about equal numbers of SLVs, but the SLV distribution was significantly differentiated: indica rice was preferentially associated with longer SLVs and japonica rice with shorter ones. The results may have significant implications regarding the origin and evolution of cultivated rice, as well as the inheritance and molecular evolution of rDNA intergenic spacers in rice. Key words : rDNA, Oryza rufipogon, Oryza sativa, germplasm diversity, evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号