首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of miR-26a in cancer cells seemed controversial in previous studies. Until now, the role of miR-26a in gastric cancer remains undefined. In this study, we found that miR-26a was strongly downregulated in gastric cancer (GC) tissues and cell lines, and its expression levels were associated with lymph node metastasis and clinical stage, as well as overall survival and replase-free survival of GC. We also found that ectopic expression of miR-26a inhibited GC cell proliferation and GC metastasis in vitro and in vivo. We further identified a novel mechanism of miR-26a to suppress GC growth and metastasis. FGF9 was proved to be a direct target of miR-26a, using luciferase assay and western blot. FGF9 overexpression in miR-26a-expressing cells could rescue invasion and growth defects of miR-26a. In addition, miR-26a expression inversely correlated with FGF9 protein levels in GC. Taken together, our data suggest that miR-26a functions as a tumor suppressor in GC development and progression, and holds promise as a prognostic biomarker and potential therapeutic target for GC.  相似文献   

2.
Eukaryotic translation initiation factor 5A2 (EIF5A2) plays an important role in tumor progression and prognosis evaluation. However, little information is available about its potential role in gastric cancer. This study aimed to investigate the function of EIF5A2 in tumor progression and its potential mechanisms. EIF5A2 expression was measured in human gastric cancer cell lines, the immortalized gastric mucosal epithelial cell line (GES-1) and human gastric cancer tissues and knocked down by RNA interference or upregulated by EIF5A2 plasmid transfection. Cell proliferation, migration and invasion were assessed in vitro. The downstream targets of EIF5A2 were examined by western blotting. EIF5A2 and its potential target metastasis-associated protein 1 (MTA1) expression were examined in 160 pairs of human gastric cancer and adjacent non-tumor specimens using immunohistochemistry (IHC) staining, and its correlation with clinicopathological features and survival was investigated. Knockdown of EIF5A2 or MTA1 caused an apparent suppression of HGC27 cell proliferation, migration and invasion. After knockdown of EIF5A2 in HGC27 cells, E-cadherin levels were upregulated and vimentin, cyclin D1, cyclin D3, C-MYC and MTA1 levels were downregulated. Upregulation of EIF5A2 in MKN45 cells resulted in the converse. IHC results showed a positive correlation between EIF5A2 and MTA1 expression in gastric cancers (P<0.001). Both EIF5A2 and MTA1 overexpression were correlated with pT stage (P=0.018 and P=0.042), pN stage (P=0.037 and P=0.020) and lymphovascular invasion (P=0.016 and P=0.044). EIF5A2 or MTA1 overexpression was significantly associated with poor overall survival and disease-free survival (All P<0.05). Multivariate analyses identified EIF5A2 as an independent predictor for both overall survival (P=0.012) and disease-free survival (P=0.008) in gastric cancer patients. Our findings indicate that EIF5A2 upregulation plays an important oncogenic role in gastric cancer. EIF5A2 may represent a new predictor for poor survival and is a potential therapeutic target for gastric cancer.  相似文献   

3.
NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.  相似文献   

4.
Accumulating evidence suggests that a unique set of receptor tyrosine kinases, known as discoidin domain receptors (DDRs), plays a role in cancer progression by interacting with the surrounding collagen matrix. In this study, we investigated the expression and role of DDR1 in human gastric cancer metastasis. Proliferation, migration, invasion, and tube formation assays were conducted in DDR1-expressing MKN74 gastric cancer cells and corresponding DDR1-silenced cells. The effects of DDR1 on tumor growth and metastasis were examined in orthotopically implanted and experimental liver metastasis models in nude mice. The expression of DDR1 in surgical specimens was analyzed by immunohistochemistry. DDR1 was expressed in human gastric cancer cell lines, and its expression in human gastric tumors was associated with poor prognosis. Among seven gastric cancer cell lines, MKN74 expressed the highest levels of DDR1. DDR1-silenced MKN74 cells showed unaltered proliferation activity. In contrast, migration, invasion, and tube formation were significantly reduced. When examined in an orthotopic nude mouse model, DDR1-silenced implanted tumors significantly reduced angiogenesis and lymphangiogenesis, thereby leading to reductions in lymph node metastasis and liver metastasis. In a model of experimental liver metastasis, DDR1-silenced cells almost completely inhibited liver colonization and metastasis. DDR1 deficiency led to reduced expression of the genes encoding vascular endothelial growth factor (VEGF)-A, VEGF-C, and platelet-derived growth factor-B. These results suggest that DDR1 is involved in gastric cancer tumor progression and that silencing of DDR1 inhibits multiple steps of the gastric cancer metastasis process.  相似文献   

5.
6.
MiRNAs play important roles in tumorigenesis. This study focused on exploring the effects and regulation mechanism of miRNA-137 on the biological behaviors of gastric cancer. Total RNA was extracted from tissues of 100 patients with gastric cancer and from four gastric cancer cell lines. Expression of miR-137 was detected by real-time PCR from 100 patients. The effects of miR-137 overexpression on gastric cancer cells’ proliferation, apoptosis, migration and invasion ability were investigated in vitro and in vivo. The target gene of miR-137 was predicted by Targetscan on line software, screened by dual luciferase reporter gene assay and demonstrated by western blot. As a result, the expression of miR-137 was significant reduced in gastric cancer cell line HGC-27, HGC-803, SGC-7901 and MKN-45 as well as in gastric cancer tissues compared with GES-1 cell or matched adjacent non-neoplastic tissues (p<0.001). The re-introduction of miR-137 into gastric cancer cells was able to inhibit cell proliferation, migration and invasion. The in vivo experiments demonstrated that the miR-137 overexpression can reduce the gastric cancer cell proliferation and metastasis. Bioinformatic and western blot analysis indicated that the miR-137 acted as tumor suppressor roles on gastric cancer cells through targeting AKT2 and further affecting the Bad and GSK-3β. In conclusion, the miR-137 which is frequently down-regulated in gastric cancer is potentially involved in gastric cancer tumorigenesis and metastasis by regulating AKT2 related signal pathways.  相似文献   

7.
8.
9.
Ubiquitin-specific protease 42 (USP42) is a member of deubiquitinating enzymes (DUBs). The alterations of DUBs are implicated in the pathogenesis of a wide variety of tumors. However, there are few studies on the expression and biological function of USP42 in gastric cancer (GC). Here, the expression levels of USP42 were significantly higher in GC tissues than in non-tumorous tissues. USP42 expression was significantly correlated with tumor size, TNM stage, lymph node metastasis and overall survival of patients with GC. Moreover, USP42 silencing in two GC cell lines, AGS and MKN-45, notably inhibited cell proliferation, but stimulated G1 phase arrest. The proteins promoting cell cycle progression (Cyclin D1, Cyclin E1 and PCNA) were down-regulated in USP42-suppressed cells. Moreover, inhibition of USP42 in GC cells impaired cell invasion via affecting the expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT) regulators. In conclusion, USP42 overexpression could be a potential prognostic marker for GC, regulate the survival and invasive properties of GC, and may represent a novel therapeutic molecular target for this tumor.  相似文献   

10.

Background

Heat shock protein 60 (HSP60) is a chaperonin with essential functions for cell physiology and survival, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of HSP60 status with clinicopathological parameters and prognosis in gastric cancer.

Methods

The levels of HSP60 and matrix metallopeptidase 9 (MMP-9) antigen was evaluated by immunohistochemistry in 223 gastric carcinoma samples. The association between HSP60 and MMP-9, clinicopathological parameters, and prognosis of gastric cancer was examined.

Results

The level of HSP60 protein was significantly associated with depth invasion, lymph node metastasis and stage of disease (all P<0.05). Both univariate and multivariate analyses revealed that HSP60 was an independent prognostic factor for both overall survival (OS) and recurrence-free survival (RFS) (both P<0.05). Furthermore, HSP60 overexpression was associated with a poor prognosis in patients with advanced gastric cancer in different risk groups. Moreover, HSP60 was significantly correlated with MMP-9 among 223 gastric cancer tissues (P<0.001). Patients who had HSP60 overexpression, in which tumor cells displayed high invasiveness, had poor OS and shorter RFS.

Conclusion

HSP60 plays an important role on tumor aggressiveness and prognosis, and may act as a promising target for prognostic prediction.  相似文献   

11.
Leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family, plays a complex role in cancer. LIF inhibits the proliferation and survival of several myeloid leukemia cells but promotes tumor progression and metastasis in many solid tumors. However, the relationship between LIF and gastric cancer has not been well understood. LIF was downregulated in gastric cancer as detected by western blot analysis and immunohistochemistry (IHC). Notably, LIF was downregulated in approximately 70% (56/80) of primary gastric cancers, in which it was significantly associated with advanced clinical stage, lymph node metastasis, and poor overall survival (median 5-year survival = 26 vs. 43 months for patients with high LIF expression and low LIF expression gastric cancer, respectively). To study the potential function of LIF in the downregulation of gastric cancer, we monitored the behavior using proliferation, cell cycle, and flow cytometry analysis. Overexpression of LIF inhibited the gastric cancer cell cycle in the G1 phase. In our experiment, overexpression of LIF by lentivirus upregulated P21 and downregulated cyclin D1. Recombinant human LIF also downregulated P21 and cyclin D1 at various times. A further in vivo tumor formation study in nude mice indicated that overexpression of LIF in gastric cancer significantly delayed the progress of tumor formation. These findings indicate that LIF may serve as a negative regulator of gastric cancer.  相似文献   

12.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

13.
Ovarian cancer is the leading malignancy of the female reproductive system and is associated with inconspicuous early invasion and metastasis. We have previously reported that the oncogene OTUB1 plays a crucial role in ovarian cancer progression, but the role of its isoform, the non‐coding RNA OTUB1‐isoform2, in ovarian cancer is still elusive. Here, we reported that OTUB1‐isoform2 expression in ovarian cancer tissues was significantly higher than that in the paired paratumorous tissues (< .01). The patients with high expression of OTUB1‐isoform2 had larger tumours than those with low expression (< .05). The high expression of OTUB1‐isoform2 was correlated with the involvement of bilateral ovaries (< .05), lymph node metastasis (< .05), vascular invasion (< .05), greater omentum involvement (< .01), fallopian tube involvement (< .05), advanced FIGO stages (< .01) and recurrence (< .01). Moreover, OTUB1‐isoform2 served as an independent negative prognostic predictor for disease‐free survival (DFS) and disease‐specific survival (DSS). Overexpression of OTUB1‐isoform2 in the ovarian cancer cells stimulated cell proliferation, migration and invasion both in vitro and in vivo. In summary, our study suggested that OTUB1‐isoform2 is a novel prognostic biomarker with independent oncogenic functions for ovarian cancer.  相似文献   

14.
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.  相似文献   

15.
The motor protein kinesin superfamily proteins (KIFs) are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively), and the protein levels were also inversely correlated with metastasis (P<0.0001). The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11) and melanoma cell adhesion molecule (MCAM) as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.  相似文献   

16.
MicroRNAs are small non-coding RNA molecules that control expression of target genes. Previous studies showed that microRNA-107 (miR-107) is overexpressed in gastric cancer tissues compared with the matched normal tissues. However, it remains largely unclear as to how miR-107 exerts its function and modulates the malignant phenotypes of gastric cancer, because our understanding of miR-107 signalling pathways is limited. In this study, we demonstrate that miR-107 is frequently up-regulated in gastric cancers and its overexpression is significantly associated with gastric cancer metastasis. Furthermore, silencing the expression of miR-107 could inhibit gastric cancer cell migration and invasion in vitro and in vivo. Subsequent investigation characterized DICER1 as a direct target of miR-107. Up-regulation of DICER1 resulted in a dramatic reduction of in vitro migration, invasion, in vivo liver metastasis of nude mice, which is similar to that occurs with the silencing of miR-107, indicating that DICER1 functions as a metastasis suppressor in gastric cancer. Furthermore, the restoration of DICER1 can inhibit miR-107-induced gastric cancer cell invasion and metastasis. In conclusion, our results suggested that miR-107, an oncogene miRNA promoting gastric cancer metastasis through down-regulation of DICER1. Inhibition of miR-107 or restoration of DICER1 may represent a new potential therapeutic target for gastric cancer treatment.  相似文献   

17.

Purpose

The present study investigated the clinical significance of transmembrane protease, serine 4(TMPRSS4) and extracellular signal-regulated kinases 1 (Erk1) in the development, progression and metastasis of gastric cancer.

Methods

Immunohistochemistry was employed to analyze TMPRSS4 and Erk1 expression in 436 gastric cancer cases and 92 non-cancerous human gastric tissues.

Results

Protein levels of TMPRSS4 and Erk1 were up-regulated in gastric cancer lesions compared with adjacent noncancerous tissues. High expression of TMPRSS4 correlated with age, size, Lauren’s classification, depth of invasion, lymph node and distant metastases, regional lymph node stage and TNM stage, and also with expression of Erk1. In stages I, II and III, the 5-year survival rate of patients with high TMPRSS4 expression was significantly lower than in patients with low expression. Further multivariate analysis suggests that up-regulation of TMPRSS4 and Erk1 were independent prognostic indicators for the disease, along with depth of invasion, lymph node and distant metastasis and TNM stage.

Conclusions

Expression of TMPRSS4 in gastric cancer is significantly associated with lymph node and distant metastasis, high Erk1 expression, and poor prognosis. TMPRSS4 and Erk1 proteins could be useful markers to predict tumor progression and prognosis of gastric cancer.  相似文献   

18.
This study aims to figure out the methylation of long non-coding RNA GAS5 promoter in cervical cancer and the mechanism of GAS5 on the progression of cervical cancer cells. The expression of GAS5 and methylation state of GAS5 in cervical cancer tissues and cells were determined. With the aim to to explore the ability of GAS5 in the proliferation, cell cycle progression, apoptosis, invasion, migration as well as the tumor growth, and metastasis in nude mice were determined. The expression of GAS5 was decreased and methylation state of GAS5 was elevated in cervical cancer. Overexpression of GAS5 inhibited proliferation, cell cycle progression, invasion, migration while inducing apoptosis of cervical cancer cells as well as suppressed tumor growth and metastasis in nude mice. Our study demonstrates that abnormal methylation of GAS5 contributes to poor expression of GAS5 in cervical cancer. In addition, upregulation of GAS5 inhibits the cervical cancer development.  相似文献   

19.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

20.
The long non-coding RNA HOTAIR has been reported to be a poor prognostic biomarker in a variety of malignant tumors. However, little is known about the association of HOTAIR with gastric cancer. We examined the expression of HOTAIR in 68 gastric cancer samples using quantitative real-time RT-PCR and analyzed its correlation with the clinical parameters. The functional role of HOTAIR was examined by generating human gastric cancer cell lines with increased or suppressed HOTAIR expression. The anchorage -independent growth was assessed by soft agar assay. The increased or suppressed HOTAIR expressing gastric cancer cells were injected into the tail vein or peritoneal cavity of immunodeficient mice to examine the effect of this molecule on metastasis and peritoneal dissemination. The expression of HOTAIR was significantly higher in cancer lesions than in adjacent non-cancerous tissues in human gastric cancers. In the diffuse type of gastric cancer, the High-HOTAIR group (HOTAIR/GAPDH > 1) showed significantly more venous invasion, frequent lymph node metastases and a lower overall survival rate compared to the Low-HOTAIR group (HOTAIR/GAPDH < 1). Colony formation on the soft agar was enhanced in a HOTAIR-dependent manner. HOTAIR-expressing MKN74 formed more liver metastasis compared to control when they were injected into the tail vein of mice. In addition, reduced expression of HOTAIR in KATO III suppressed peritoneal dissemination. These results suggest that HOTAIR plays a pivotal role in the development of gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号