首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aim to uncover the methylation of microRNA-7 (miR-7) promoter in osteosarcoma (OS) and the inner mechanism of miR-7 on the progression of OS cells. Expression and methylation state of miR-7 in OS tissues and cells were detected. With the aim to unearth the ability of miR-7 in OS, the proliferation, cell cycle progression, apoptosis, invasion, migration of OS cells, and the tumor growth in nude mice were determined. Meanwhile, IGF1R expression was detected and the association between miR-7 and IGF1R was confirmed. The proliferating cell nuclear antigen (PCNA) expression was tested by immunohistochemical staining, and the lung metastasis was observed by H&E staining. miR-7 expression was decreased and methylation state of miR-7 was increased in OS tissues and cells. Upregulated miR-7 inhibited proliferation, cell cycle progression, invasion,and migration, while inducing apoptosis of OS cells and the tumor growth as well as PCNA expression in nude mice. Expression of IGF1R was downregulated in OS cells with overexpression of miR-7. Experiments verified the binding site between miR-7 and IGF1R. Our study demonstrates that abnormal methylation of miR-7 contributes to decreased miR-7 in OS. In addition, miR-7 represses the initiation and progression of OS cells through the inhibition of IGF1R.  相似文献   

2.
Bladder cancer is the most common malignancy with high recurrence. Currently, the long noncoding RNAs (lncRNAs) have been suggested to play vital roles in the pathogenesis of bladder cancer. The present study investigated the role of lncRNA MIR503 host gene (MIR503HG) in the pathogenesis of bladder cancer by using both in vitro and in vivo functional assays. The expression of MIR503HG was downregulated in bladder cancer tissues and cell lines. Low expression of MIR503HG was associated with advanced tumor stage, advanced histological grade, and lymph node metastasis. Ectopic expression of MIR503HG inhibited cell proliferation, cell growth, cell invasion, and migration, and also promoted cell apoptosis and inhibited cell cycle progression in SW780 cells. In parallel, T24 cells were used for loss-of-function studies. Knockdown of MIR503HG promoted the cancer cell proliferation and increased the migration and invasion abilities of T24 cells. In addition, knockdown of MIR503HG reduced the cell apoptotic rate in cancer cells and promoted cell cycle progression. Furthermore, MIR503HG overexpression decreased the epithelial-mesenchymal transition-related mRNA and protein levels of ZEB1, Snail, N-cadherin, and vimentin, with an increase in E-cadherin level. Consistently, knockdown of MIR503HG showed the opposite effects. In vivo xenograft, nude mice results showed that overexpression of MIR503HG suppressed the tumor growth and tumor metastasis. In conclusion, our results identified a novel lncRNA MIR503HG that exhibited significant antiproliferation, antimigration/invasion effects on bladder cancer cells both in vitro and in vivo, which may hold a therapeutic promise to treat bladder cancer.  相似文献   

3.
Loss of function of metastasis suppressor genes is an important step in the progression to a malignant tumor type. Studies in cell culture and animal models have suggested a role of Raf kinase inhibitor protein (RKIP) in suppressing the metastatic spread of prostate cancer, breast cancer, and melanoma cells. However, the function of RKIP in ovarian cancer (OVCA) has not been reported. To explore the potential role of RKIP in epithelial OVCA metastasis, we detected the expression levels of RKIP protein in tissue samples from patients with epithelial OVCA. Consequently, the expression of RKIP is reduced in the poorly differentiated OVCA than in the well-differentiated and moderately differentiated OVCA. In addition, in vitro cell invasion assay indicated that the RKIP expression was inversely associated with the invasiveness of five OVCA cell lines. Consistent with this result, the cell proliferation, anchorage-independent growth, cell adhesion, and invasion were decreased in RKIP overexpressed cells but increased in RKIP down-regulated cells. Further investigation indicated that RKIP inhibited OVCA cell proliferation by altering cell cycle progression rather than promoting apoptosis. Furthermore, the overexpression of RKIP suppressed the ability of human OVCA cells to metastasize when the tumor cells were transplanted into nude mice. Our data show the effect of RKIP on the proliferation, migration, or adhesion of OVCA cells. These results indicate that RKIP is also a metastasis suppressor gene of human epithelial OVCA.  相似文献   

4.
Background: The deubiquitinase OTUB1 plays critical oncogenic roles and facilitates tumor progression in cancer. However, less is known regarding the aberrant expression, clinical significance and biological functions of the non-coding RNA OTUB1-isoform 2. We aimed to evaluate the OTUB1-isoform 2 levels in gastric cancer and their possible correlation with clinicopathologic features and patient survival to reveal its biological effects in gastric cancer progression.Methods: Total RNA extraction was performed on 156 gastric cancer case samples, and RT-qPCR was conducted. Chi-square test analysis was used to calculate the correlation between pathological parameters and the OTUB1-isoform 2 mRNA levels. Kaplan-Meier and Cox proportional hazards analyses were used to analyze the overall survival (OS) and disease-free survival (DFS) rates. Nuclear and cytoplasmic RNAs were isolated to detect the subcellular localization of OTUB1-isoform 2. We also assessed whether overexpression of OTUB1-isoform 2 influenced in vitro cell proliferation, cell cycle progression, tumor cell invasion and migration, as well as in vivo nude mouse xenograft and metastasis models.Results: The OTUB1-isoform 2 expression levels were higher in the gastric cancer samples than in the paratumorous gland samples. OTUB1-isoform 2 expression levels tightly correlated with tumor size, lymph node metastasis and TNM staging. Higher OTUB1-isoform 2 expression levels led to significantly poorer OS and DFS rates, and a multivariate analysis revealed that OTUB1-isoform 2 was an independent risk factor for DFS. OTUB1-isoform 2 was predominantly localized in the cell nucleus. Ectopic overexpression of OTUB1-isoform 2 in gastric cancer cells stimulated proliferation by inducing G1-S transition, suppression of cell apoptosis and promotion of tumor cell invasion and migration. Finally, OTUB1-isoform 2 overexpression promoted tumor growth and tumor metastasis in nude mice models.Conclusions: Our study suggests that OTUB1-isoform 2 independently predicts poor prognosis and promotes tumor progression in gastric cancer. The non-coding RNA OTUB1-isoform 2 should be targeted in future molecular therapies.  相似文献   

5.
6.
Estrogen-related receptor α (ERRα) belongs to the superfamily of nuclear orphan receptors. However, the role of ERRα in bladder cancer remains unknown. This study examined the expression of ERRα in bladder cancer tissues and explored the molecular mechanisms of ERRα in bladder cancer progression. The expression of ERRα in bladder cancer tissues from 61 patients was determined by immunohistochemistry. We performed quantitative real-time polymerase chain reaction assay to detect the gene expression levels and carried out Western blot assay to measure protein levels. In vitro functional assays, including colony formation, Cell Counting Kit-8, Transwell invasion, and migration assays, were performed to detect bladder cancer cell growth, proliferation, invasion, and migration, respectively. Flow cytometry was used to determine the cell apoptotic rate of bladder cancer cells. Among the 61 detected bladder cancer tissues, 39 bladder cancer tissues showed positive ERRα immunoreactivity. Higher ERRα immunoreactivity score was significantly associated with TNM stage, tumor grade, distant metastasis, and poor survival in patients with bladder cancer. Univariate and multivariate analyses showed that ERRα immunoreactivity was an independent prognostic factor for overall survival in patients with bladder cancer. ERRα was found to be upregulated in bladder cancer cell lines, and knockdown of ERRα suppressed bladder cancer cell growth, proliferation, invasion, and migration; promoted bladder cancer cell apoptosis; and inhibited the epithelial-mesenchymal transition of bladder cancer cells. On the other hand, bladder cancer cell proliferation, invasion, and migration were significantly enhanced after cells were transfected with an ERRα-overexpressing vector. In vivo tumor growth and metastasis assays showed that ERRα knockdown resulted in remarkable inhibition of tumor growth and tumor metastasis in nude mice. Collectively, our results suggest that the enhanced expression of ERRα may play a key role in the development and progression of bladder cancer and ERRα may serve as an important prognostic factor for bladder cancer.  相似文献   

7.
This study was conducted to evaluate the influence of DNA methylation of metastasis suppressor 1 (MTSS1) on prostate cancer (PCa) progression. Forty-nine paired PCa tissue samples and normal tissue samples from The Cancer Genome Atlas were analyzed. Methylome analysis, CpG island arrays and Hierarchical clustering were used to analyze methylation profiles of PCa tissues. MTSS1 methylation level was detected by methylation-specific PCR. Relative messenger RNA and the expression level of MTSS1 protein were identified by quantitative real-time PCR (qRT-PCR) and western blot analysis. The migration, invasion, proliferation, and cell cycle were detected separately by wound-healing assay, transwell chamber assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry. The roles of MTSS1 in PCa progression were demonstrated in vivo by tumor formation assays in nude mice. MTSS1 expression was decreased in PCa tissues in comparison with paired adjacent normal prostate tissues. Compared to the methylation of MTSS1 in normal prostate tissues based on the MethHC website, the MTSS1 in PCa tissues was hypermethylated. The expression of MTSS1 detected by qRT-PCR and western blot analysis was found to be downregulated in PCa cells and tissues. The reduced expression of MTSS1 by small interfering RNA-MTSS1 was recovered by 5-aza-2′-deoxycytidine treatment. Besides, MTSS1 demethylation inhibited migration, invasion, and proliferation of PCa cells, and induced cell cycle to be arrested at G0/G1 phase. Furthermore, it was shown by tumor xenograft assay that MTSS1 inhibited the growth of tumor in vivo. Hypermethylated MTSS1 promoted PCa cells migration, invasion, and proliferation, and suppressed cell cycle arrest at the G0/G1 phase.  相似文献   

8.
Cathepsin B is a protease which is able to digest extracellular matrix. It is currently unknown whether cathepsin B plays a role in cervical cancer development and progression. With Q-PCR and Western blotting, we observed cathepsin B expression in cervical cancer cell line Hela cells. After the gene was silenced in HeLa cells with SiRNA, we confirmed that cathepsin B expressions at both mRNA and protein levels were significantly reduced. At the same time, cell proliferation, migration and invasion of the HeLa cells were significantly decreased compared to control cells. In addition, a significant regression of tumor growth in nude mice which received the siRNA targeted cathepsin B HeLa cells was observed. We further studied the expression of cathepsin B in a series of 169 clinical samples, including 56 invasive cervical squamous carcinoma, 85 CINs and 28 normal cervical tissues. It was found that cathepsin B expression in invasive carcinomas was significantly higher than that in the CINs and normal tissues (P<0.01). In addition, cathepsin B expression in the invasive carcinomas was positively correlated to tumor invasion depth and lymphatic metastasis. Our results indicate that cathepsin B may be a potential biomarker for further strategical clinical studies in cervical cancer.  相似文献   

9.
Our main objective is probing the effect of methylation of CLEC14A on its expression and lung adenocarcinoma (LUAD) progression. Microarray analysis was utilized to screen out differentially downregulated genes with hypermethylation in LUAD tissues. The CLEC14A expression level was measured by western blot analysis and qRT-PCR. Methylation-specific-PCR was performed to evaluate methylation status of CLEC14A. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid (MTT) assay was used to check the relation between CLEC14A expression and cell proliferation. Cell cycle, cell apoptosis, migration, and invasion were respectively detected by the flow cytometry assay, wound healing assay, and transwell assay. Tumor xenograft models were established for investigating the effect of CLEC14A on tumor formation. CLEC14A expression in LUAD tissues was impaired compared with that in adjacent tissues, and CLEC14A promoter was highly methylated in LUAD. Overexpressing CLEC14A or inhibiting the methylation level of CLEC14A in A549 and LTEP-a-2 cells impeded the duplication of LUAD cells, promoted apoptosis, attenuated cell migration, and invasion ability, and arrested cell cycle at the G0/G1 phase. Overexpression of CLEC14A inhibited tumorigenesis of LUAD cells in nude mice. The promoter of CLEC14A is methylated in LUAD, leading to downregulation of CLEC14A in LUAD. CLEC14A acts as an antitumor role in LUAD by suppressing cell proliferation, migration, invasion, promoting cell apoptosis, and reducing tumorigenicity in nude mice. Thus, the inhibition of CLEC14A methylation is a novel strategy for the clinic treatment of LUAD.  相似文献   

10.
In recent years, circular RNAs have been shown to serve as essential regulators in several human cancers. Nevertheless, the function and mechanism of CircRNA in cervical cancer remain elusive. In the present study, we showed that hsa_circRNA_101996 was highly expressed in cervical cancer tissues compared with matched normal tissues by bioinformatics analysis. We showed that the expression level of hsa_circRNA_101996 in cervical cancer tissues was positively correlated with TNM stage, tumor size, and lymph node metastasis. Moreover, higher levels of hsa_circRNA_101996 were related to poor outcomes of cervical cancer patients. We found that knockdown of hsa_circRNA_101996 significantly inhibited the proliferation, cell cycle, migration, and invasion of cervical cancer cells. Mechanistically, we demonstrated that hsa_circRNA_101996 served as a sponge of miR-8075, which targeted TPX2 in cervical cancer cells. We showed that miR-8075 that was downregulated in cervical cancer tissues repressed cervical cancer cell proliferation, migration, and invasion. Furthermore, we validated that upregulation of TPX2 by hsa_circRNA_101996-mediated inhibition of miR-8075 contributed to cervical cancer proliferation, migration, and invasion. Taken together, our findings revealed a novel mechanism that hsa_circRNA_101996-miR-8075-TPX2 network promoted cervical cancer progression.  相似文献   

11.
Accumulating evidence suggests that a unique set of receptor tyrosine kinases, known as discoidin domain receptors (DDRs), plays a role in cancer progression by interacting with the surrounding collagen matrix. In this study, we investigated the expression and role of DDR1 in human gastric cancer metastasis. Proliferation, migration, invasion, and tube formation assays were conducted in DDR1-expressing MKN74 gastric cancer cells and corresponding DDR1-silenced cells. The effects of DDR1 on tumor growth and metastasis were examined in orthotopically implanted and experimental liver metastasis models in nude mice. The expression of DDR1 in surgical specimens was analyzed by immunohistochemistry. DDR1 was expressed in human gastric cancer cell lines, and its expression in human gastric tumors was associated with poor prognosis. Among seven gastric cancer cell lines, MKN74 expressed the highest levels of DDR1. DDR1-silenced MKN74 cells showed unaltered proliferation activity. In contrast, migration, invasion, and tube formation were significantly reduced. When examined in an orthotopic nude mouse model, DDR1-silenced implanted tumors significantly reduced angiogenesis and lymphangiogenesis, thereby leading to reductions in lymph node metastasis and liver metastasis. In a model of experimental liver metastasis, DDR1-silenced cells almost completely inhibited liver colonization and metastasis. DDR1 deficiency led to reduced expression of the genes encoding vascular endothelial growth factor (VEGF)-A, VEGF-C, and platelet-derived growth factor-B. These results suggest that DDR1 is involved in gastric cancer tumor progression and that silencing of DDR1 inhibits multiple steps of the gastric cancer metastasis process.  相似文献   

12.
Cervical cancer is the most common cause of female cancer-related mortality worldwide. Decreased expression of long noncoding RNA growth arrest-specific 5 (GAS5) is found in human cervical cancer tissues and associated with poor prognosis. However, the studies on associations between GAS5 level and malignant phenotypes, as well as sensitivity to chemotherapeutic drug in cervical cancer cells are limited. In this study, overexpression of GAS5 in cervical cancer cells resulted in prohibited cell proliferation and colony formation, which were promoted by siGAS5. Enhanced GAS5 increased cell percentage in the G0/G1 phase and decreased cells percentage in the S phase, whereas reduced expression did not. The malignant behaviors of cervical cancer cells, manifested by cell migration and invasion, could be weakened by the GAS5 overexpression and enhanced by siGAS5. Furthermore, in cisplatin-induced cell, overexpression of GAS5 reduced cells viability and enhanced apoptosis, whereas in cells transfected with siGAS5, apoptosis eliminated. We have reported the upregulation of microRNA-21 (miR-21) and its oncogenetic roles in cervical cancer previously. In this study, we found the negative relationship between the GAS5 and miR-21. Moreover, the decrease of miR-21 associated proteins phosphorylated STAT3 and E2F3 was seen in GAS5 overexpressed cells, both of which could be increased by siGAS5. The GAS5 deficiency also reduced miR-21 target proteins TIMP3 and PDCD4 expressions. Taken together, the GAS5 expression level is inversely associated with malignancy, but positively associated with sensitivity to cisplatin-induced apoptosis, suggesting that GAS5 could be a biomarker of cisplatin-resistance in clinical therapy of human cervical cancer.  相似文献   

13.
为了研究新的肿瘤治疗方法,设计了1种弱碱性消癌液(weak alkaline cancer-eliminating liquid,WACEL),测试WACEL是否抑制癌细胞的生长转移及消亡.在体外,检测WACEL对3种细胞株,即子宫颈鳞癌细胞SiHa、非小细胞肺鳞癌细胞H1299、人乳腺癌细胞MDA-MB-231的生长增殖、细胞周期、细胞凋亡、侵袭转移的影响. 在体内,建立人乳腺癌裸鼠颈背皮下移植瘤模型,观察WACEL对裸鼠皮下肿瘤生长转移的作用. 研究结果发现,WACEL明显抑制3种细胞系的生长增殖,G2/M期细胞增多,出现G2/M期阻滞,阻止细胞周期的进程. 细胞形态呈圆状,细胞核浓缩,caspase-3活性检测增加,线粒体的膜电位降低,细胞凋亡;活细胞数目减少,细胞膜破裂,发生消亡现象,癌细胞迁移明显减少(P﹤0.001).目标基因SCCA1、cyclinB1、MMP-2以及MMP-9 的mRNA表达水平下调,caspase-3的mRNA表达水平上调;SCCA1、cyclinB1和MMP-2蛋白表达下调,caspase-3蛋白表达上调.体内动物实验发现,处理组的肿瘤生长较对照组明显缓慢,肺组织HE染色未见明显癌细胞转移,而对照组可见癌细胞转移. WACEL能抑制乳腺癌细胞的生长、转移并介导其消亡.本研究系统分析WACEL与癌细胞本身及其pH微环境之间的相互作用机制,发现其改变癌细胞所处的微环境的重要性.  相似文献   

14.
Plexin-B1, the receptor for Sema4D, has been reported to trigger multiple and sometimes opposing cellular responses in various types of tumor cells. It has been implicated in the regulation of tumor-cell survival, proliferation, angiogenesis, invasion and metastasis. However, the plexin-B1 gene expression and its regulatory mechanism in cervical cancer remain unclear. The present study shows that plexin-B1 is over-expressed in cervical tumor tissues compared to normal cervical tissues by immunohistochemistry, Western blotting and quantitative RT-PCR. The expression of plexin-B1 is significantly associated with cervical tumor metastasis and invasion according to the analysis of the clinicopathologic data. Plexin-B1 also promotes proliferation, migration and invasion in human cervical cancer HeLa cells. We also found that the plexin-B1 levels are inversely correlated with miR-214 amounts in both cervical cancer tissues and HeLa cells. And miR-214 expression level is also associated with metastasis and invasion of cervical tumor. Furthermore, we demonstrate that plexin-B1 is inhibited by miR-214 through a miR-214 binding site within the 3'UTR of plexin-B1 in HeLa cells. Ectopic expression of miR-214 could inhibit the proliferation capacity, migration and invasion ability of HeLa cells. Our findings suggest that plexin-B1, a target of miR-214, may function as an oncogene in human cervical cancer HeLa cells.  相似文献   

15.
Cervical cancer is a cancer arising from the cervix, and it is the fourth most common cause of death in women. Overexpression of fibronectin 1 (FN1) was observed in many tumors and associated with the survival and metastasis of cancer cells. However, the mechanism by which FN1 promotes cervical cancer cell viability, migration, adhesion, and invasion, and inhibits cell apoptosis through focal adhesion kinase (FAK) signaling pathway remains to be investigated. Our results demonstrated that FN1 was upregulated in patients with cervical cancer and higher FN1 expression correlated with a poor prognosis for patients with cervical cancer. FN1 knockdown by small interfering RNA (siRNA) inhibited SiHa cell viability, migration, invasion, and adhesion, and promoted cell apoptosis. FN1 overexpression in CaSki cell promoted cell viability, migration, invasion, and adhesion, and inhibited cell apoptosis. Further, phosphorylation of FAK, a main downstream signaling molecule of FN1, and the protein expression of Bcl-2/Bax, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and N-cadherin was upregulated in CaSki cells with FN1 overexpression, but caspase-3 protein expression was downregulated. The FAK phosphorylation inhibitor PF573228 inhibited FN1 overexpression-induced expression of those proteins in CaSki cells with FN1 overexpression. In vivo experiment demonstrated that FN1 knockdown significantly inhibited FN1 expression, phosphorylation of FAK, and tumor growth in xenograft from the nude mice. These results suggest that FN1 regulates the viability, apoptosis, migration, invasion, and adhesion of cervical cancer cells through the FAK signaling pathway and is a potential therapeutic target in the treatment of cervical cancer.  相似文献   

16.
17.
Long noncoding RNAs have an essential role in the tumorigenesis of breast cancer (BC). Nonetheless, the consequences of long intergenic noncoding RNA 00641 (LINC00641) in BC remain unidentified. This study shows that LINC00641 expression level was decreased in BC tissues. LINC00641 expression level was negatively related to tumor size, lymph-node metastasis, as well as clinical stage. LINC00641 overexpression inhibited cell proliferation, migration, and invasion but stimulated apoptosis in BC cells. LINC00641 overexpression also remarkably reduced BC growth and metastasis in vivo. LINC00641 acts as a competitive endogenous RNA to sponge miR-194-5p. miR-194-5p level was higher in BC tissues and cells compared with normal-adjacent tissues and normal breast epithelial cell. miR-194-5p expression was negatively correlated with LINC00641 expression in BC tissues. miR-194-5p overexpression reversed the effects of LINC00641 on cell proliferation, cycle, apoptosis, migration, as well as invasion. In conclusion, LINC00641 inhibits BC cell proliferation, migration, as well as invasion by sponging miR-194-5p.  相似文献   

18.
目的:探讨G蛋白偶联胆汁酸受体1(G-protein coupled bile acid receptor 1,GPBAR1/TGR5)对胃癌细胞增殖、迁移和侵袭的影响。方法:免疫组织化学染色方法(Immunohistochemistry,IHC)检测胃癌及癌旁组织芯片中TGR5表达情况;qRT-PCR及Western blot检测胃癌细胞系中TGR5表达水平;小干扰RNA处理AGS、MKN-45胃癌细胞后构建TGR5敲减细胞系,慢病毒载体转染胃癌SGC-7901细胞构建TGR5过表达细胞系;CCK-8实验、平板克隆形成实验、裸鼠皮下移植瘤实验检测TGR5对细胞增殖的影响;流式细胞仪检测TGR5对细胞周期及凋亡的影响;Tanswell实验检测TGR5对胃癌细胞迁移及侵袭的影响;Western blot检测上皮间充质转化(Epithelial-mesenchymal transition,EMT)相关分子β-连环蛋白(β-catenin)、锌脂蛋白转录因子(Snail)、E盒结合锌指蛋白(Zinc finger E-box binding homeobox 1,ZEB)1在AGS、MKN-45及SGC-7901胃癌细胞中的表达。结果:TGR5在胃癌及癌旁组织中均有表达,胃癌组织TGR5高表达率(41.0%)显著高于癌旁组织(9.5%),伴肠化生癌旁组织TGR5高表达率(50%)显著高于不伴肠化生的癌旁组织(0%),胃癌组织TGR5表达与肿瘤大小相关。TGR5在正常人胃上皮永生化细胞株GES-1及各胃癌细胞系中均有表达。TGR5表达敲低的AGS和MKN-45细胞增殖能力减弱、凋亡率显著升高、侵袭和迁移能力显著降低。过表达TGR5的SGC-7901细胞增殖能力增强、克隆形成能力提高、凋亡率明显减低、侵袭和迁移能力显著升高。此外,TGR5过表达显著上调了间质细胞标志物β-catenin、Snail、ZEB1的表达水平。结论:TGR5能够增强胃癌细胞增殖及迁移能力,并抑制细胞凋亡。TGR5可能通过EMT途径介导胃癌细胞转移。  相似文献   

19.
MicroRNAs (miRNAs) are small, non-coding RNAs that are critical regulators of various diseases. MicroRNA-20a (miR-20a) has previously significantly altered in a range of cancers. In this study, we detected the relationship between miR-20a and the development of cervical cancer by qRT-PCR, we found that the expression level of miR-20a was significantly higher in cervical cancer patients than in normal controls, the aberrant expression of miR-20a was correlated with lymph node metastasis, histological grade and tumor diameter. Then we successfully established the stable anti-miR-20a cervical cancer cell lines by lentivirus. Inhibited miR-20a prevented tumor progression by modulating cell cycle, apoptosis, and metastasis in vitro and in vivo. TIMP2 and ATG7 were proved to be direct targets of miR-20a, using luciferase assay and western blot. These results indicate that miR-20a suppresses the proliferation, migration and invasion of cervical cancer cell through targeting ATG7 and TIMP2. Our results support the involvement of miR-20a in cervical tumorigenesis, especially lymph node metastasis. We propose that miRNAs might be used as therapeutic agent for cervical cancer.  相似文献   

20.
CP-31398, a styrylquinazoline, emerges from a screen for therapeutic agents that restore the wild-type DNA-binding conformation of mutant p53 to suppress tumors in vivo, but its effects on cervical cancer (CC) remain unknown. Hence, this study aimed to explore the effects CP-31398 has on the CC cells and to investigate whether it is associated with paired box 2 (PAX2) expression. CC cells were treated with different concentrations of CP-31398 (1, 2, 4, 6, 8, and 10 μg/ml) to determine the optimum concentration using fluorometric microculture cytotoxicity assay. After constructing the sh-PAX2 vector, CC cells were transfected with sh-PAX2 or treated with CP-31398. The effects of CP-31398 or PAX2 silencing on CC cell proliferation, apoptosis, invasion, and migration were evaluated. Epithelial mesenchymal transition (EMT)-related genes such as E-cadherin, vimentin, N-cadherin, snail, and twist in CC cells were detected. Tumor formation experiment in nude mice was performed to observe tumor growth. The optimum concentration of CP-31398 was 2 μg/ml. PAX2 was overexpressed in CC cells. CC cells treated with CP-31398 or treated with sh-PAX2 inhibited proliferation, invasion, and migration but promoted apoptosis with decreased PAX2 expression. The EMT process in CC cells was also reversed after treatment with CP-31398 or sh-PAX2. Moreover, the tumor formation experiment in nude mice revealed the inhibitory activity of CP-31398 in CC tumor in nude mice by suppressing PAX2. Our results provide evidence that CP-31398 could inhibit EMT and promote apoptosis of CC cells to curb CC tumor growth by downregulating PAX2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号