首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of plant trichome development by a cotton fiber MYB gene   总被引:33,自引:0,他引:33       下载免费PDF全文
Wang S  Wang JW  Yu N  Li CH  Luo B  Gou JY  Wang LJ  Chen XY 《The Plant cell》2004,16(9):2323-2334
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Most of the plant homeodomain-containing proteins play important roles in organ patterning and development, and Arabidopsis GLABRA2 (GL2), a member of the class IV homeodomain-leucine zipper (HD-ZIP) proteins, is a trichome and non-root hair cell regulator. Here we report the analysis of two cotton homeodomain-containing proteins, GaHOX1 and GaHOX2, isolated from the diploid cotton Gossypium arboreum . Both GaHOX1 and GaHOX2 belong to the class IV HD-ZIP family. When expressed under the control of the GL2 promoter, GaHOX1 rescued trichome development of an Arabidopsis glabrous mutant of gl2-2 (SALK_130213), whereas GaHOX2 did not. On the other hand, expression of GaHOX1 with a Cauliflower mosaic virus (CaMV) 35S promoter in the wild-type Arabidopsis plants suppressed the trichome development just as the GL2 ectopic expression. Expression analysis by Northern, RT-PCR and in situ hybridization indicated that GaHOX1 is predominantly expressed in cotton fiber cells at early developmental stages, consistent with its putative role in regulating cotton fiber development, while GaHOX2 is expressed in both fiber and other ovular tissues, including outer and inner integuments. Our results suggest that GaHOX1 is a functional homolog of GL2 in plant trichome development.  相似文献   

13.
The Arabidopsis thaliana MYB5 gene is expressed in trichomes and seeds, including the seed coat. Constitutive expression of MYB5 resulted in the formation of more small trichomes and ectopic trichomes and a reduction in total leaf trichome numbers and branching. A myb5 mutant displayed minimal changes in trichome morphology, while a myb23 mutant produced increased numbers of small trichomes and two-branched trichomes. A myb5 myb23 double mutant developed more small rosette trichomes and two-branched trichomes than the single mutants. These results indicate that MYB5 and MYB23 regulate trichome extension and branching. The seed coat epidermal cells of myb5 and myb5 myb23 were irregular in shape, developed flattened columellae, and produced less mucilage than those of the wild type. Among the downregulated genes identified in the myb5 seeds using microarray analysis were ABE1 and ABE4 (α/β fold hydrolase/esterase genes), MYBL2, and GLABRA2. The same genes were also downregulated in transparent testa glabra1 (ttg1) seeds, suggesting that MYB5 collaborates with TTG1 in seed coat development. These genes were upregulated in leaves and roots by ectopically expressed MYB5. The MYBL2, ABE1, and ABE4 promoters were active in seeds, including seed coats, and the latter two also in trichomes. Models of the MYB5 regulatory networks involved in seed coat and trichome development are presented.  相似文献   

14.
15.
The GL1 gene is required for the initiation of differentiation of hair cells (trichomes) on the crucifer, Arabidopsis thaliana. This gene has been localized to a 4.5 kb DNA fragment by molecular complementation of gl1 mutants. DNA sequence analysis has shown that the protein encoded by GL1 contains a Myb DNA-binding motif. Southern analysis and subsequence analysis of isolated lambda clones has established that GL1 is a member of an extensive myb gene family in Arabidopsis. The putative GL1 promoter directs the expression of the GUS reporter gene in non-trichome-bearing structures that appear to be stipules. This pattern of expression suggests that GL1 may control the synthesis of a diffusible signal that activates the developmental pathway for trichome differentiation.  相似文献   

16.
Cotton (Gossypium spp.) fibers are single-cell trichomes that arise from the outer epidermal layer of seed coat. Here, we isolated a R3-MYB gene GhCPC, identified by cDNA microarray analysis. The only conserved R3 motif and different expression between TM-1 and fuzzless-lintless mutants suggested that it might be a negative regulator in fiber development. Transgenic evidence showed that GhCPC overexpression not only delayed fiber initiation but also led to significant decreases in fiber length. Interestingly, Yeast two-hybrid analysis revealed an interaction complex, in which GhCPC and GhTTG1/4 separately interacted with GhMYC1. In transgenic plants, Q-PCR analysis showed that GhHOX3 (GL2) and GhRDL1 were significantly down regulated in −1–5 DPA ovules and fibers. In addition, Yeast one-hybrid analysis demonstrated that GhMYC1 could bind to the E-box cis-elements and the promoter of GhHOX3. These results suggested that GhHOX3 (GL2) might be downstream gene of the regulatory complex. Also, overexpression of GhCPC in tobacco led to differential loss of pigmentation. Taken together, the results suggested that GhCPC might negatively regulate cotton fiber initiation and early elongation by a potential CPC-MYC1-TTG1/4 complex. Although the fibers were shorter in transgenic cotton lines than in the wild type, no significant difference was detected in stem or leaf trichomes, even in cotton mutants (five naked seed or fuzzless), suggesting that fiber and trichome development might be regulated by two sets of genes sharing a similar model.  相似文献   

17.
Pu L  Li Q  Fan X  Yang W  Xue Y 《Genetics》2008,180(2):811-820
  相似文献   

18.
19.
20.
Payne CT  Zhang F  Lloyd AM 《Genetics》2000,156(3):1349-1362
Arabidopsis trichome development and differentiation is a well-studied model for plant cell-fate determination and morphogenesis. Mutations in TRANSPARENT TESTA GLABRA1 (TTG1) result in several pleiotropic defects including an almost complete lack of trichomes. The complex phenotype caused by ttg1 mutations is suppressed by ectopic expression of the maize anthocyanin regulator R. Here it is demonstrated that the Arabidopsis trichome development locus GLABRA3 (GL3) encodes an R homolog. GL3 and GLABRA1 (GL1) interact when overexpressed together in plants. Yeast two-hybrid assays indicate that GL3 participates in physical interactions with GL1, TTG1, and itself, but that GL1 and TTG1 do not interact. These data suggest a reiterated combinatorial model for the differential regulation of such diverse developmental pathways as trichome cell-fate determination, root hair spacing, and anthocyanin secondary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号