首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响   总被引:8,自引:0,他引:8  
关于大气CO2浓度倍增(即为700μmolCO2·mol-1空气)将对植物生长产生诸多影响,已有大量报道[1,2]。但CO2倍增对植物及所在土壤中微生物影响的研究甚少[3,4]。土壤微生物是陆地生态系统中最活跃的成分,担负着分解动植物残体的重要作用,...  相似文献   

2.
通过田间小区试验,研究了不同油菜种植密度与施氮肥对麦茬复种饲料油菜耕层土壤(0~5 cm)微生物活性的影响.结果表明,复种油菜能显著或极显著性提高耕层土壤微生物量碳(Cmic)、土壤微生物量氮(Nmic)、土壤细菌数(SBN)、土壤真菌数(SFN)和土壤放线菌数(SAN),而显著降低土壤微生物量碳/氮比(Cmic/Nmic).随油菜种植密度的提高,耕层Cmic、Cmic/Nmic、SBN呈逐渐增加态势,而Nmic、SAN呈降低趋势.随着施氮肥梯度增加,耕层SFN显著提高,Cmic和Nmic呈先降低后增加再降低趋势,以1 000 kg·hm-2施肥处理最高.SFN和收获期SAN为先降低后升高,苗期SAN则为先升高后降低.相同处理油菜收获期各土壤微生物活性指标均高于苗期,而600 kg·hm-2苗期SAN则相反.SBN和SAN与Cmic、Nmic呈正相关,与Cmic/Nmic呈负相关,SFN与Cmic、Nmic及Cmic/Nmic之间均无明显相关性.  相似文献   

3.
Kandeler  E.  Tscherko  D.  Bardgett  R.D.  Hobbs  P.J.  Kampichler  C.  Jones  T.H. 《Plant and Soil》1998,202(2):251-262
We investigate the response of soil microorganisms to atmospheric CO2 and temperature change within model terrestrial ecosystems in the Ecotron. The model communities consisted of four plant species (Cardamine hirsuta, Poa annua, Senecio vulgaris, Spergula arvensis), four herbivorous insect species (two aphids, a leaf-miner, and a whitefly) and their parasitoids, snails, earthworms, woodlice, soil-dwelling Collembola (springtails), nematodes and soil microorganisms (bacteria, fungi, mycorrhizae and Protista). In two successive experiments, the effects of elevated temperature (ambient plus 2 °C) at both ambient and elevated CO2 conditions (ambient plus 200 ppm) were investigated. A 40:60 sand:Surrey loam mixture with relatively low nutrient levels was used. Each experiment ran for 9 months and soil microbial biomass (Cmic and Nmic), soil microbial community (fungal and bacterial phospholipid fatty acids), basal respiration, and enzymes involved in the carbon cycling (xylanase, trehalase) were measured at depths of 0–2, 0–10 and 10–20 cm. In addition, root biomass and tissue C:N ratio were determined to provide information on the amount and quality of substrates for microbial growth.Elevated temperature under both ambient and elevated CO2 did not show consistent treatment effects. Elevation of air temperature at ambient CO2 induced an increase in Cmic of the 0–10 cm layer, while at elevated CO2 total phospholipid fatty acids (PLFA) increased after the third generation. The metabolic quotient qCO2 decreased at elevated temperature in the ambient CO2 run. Xylanase and trehalase showed no changes in both runs. Root biomass and C:N ratio were not influenced by elevated temperature in ambient CO2. In elevated CO2, however, elevated temperature reduced root biomass in the 0–10 cm and 30–40 cm layers and increased N content of roots in the deeper layers. The different response of root biomass and C:N ratio to elevated temperature may be caused by differences in the dynamics of root decomposition and/or in allocation patterns to coarse or fine roots (i.e. storage vs. resource capture functions). Overall, our data suggests that in soils of low nutrient availability, the effects of climate change on the soil microbial community and processes are likely to be minimal and largely unpredicatable.  相似文献   

4.
The effects of CO2 concentration on leaf thickness, chloroplast manbers in the bundle sheath cell, epidermal cell density, stomatal density, stomatal index, stomatal size were compared in 10 species in Gramineae: Triticum aestivum L., T. aestivum ssp. tibeticum, Hordeum vulgare L., H. brevisubulatum ( Trin. ) Link, Oryza sativa L., O. meyeriana ssp. granulata, Setaria italica (L.) Beauv, S. viridis (L.) Beauv, Sorghum vulgare Pers., Zea mays L. following their exposure to doubled carbon dioxide (700μL/L) and ambient carbon dioxide concentration (350μL/L). The results indicated that different species of plants might vary in their response to doubled CO2. In general, the leaves became thicker under the elevated CO2 condition. The mean stomatal density of the C3 species was decreased in doubled CO2, whereas the results of C4 species showed an inverse trend. The epidermal cell density and the chloroplast numbers of the bundle sheath cell in the wild plant species were less than those in the control under CO2 enrichment. The stomatal density was positively correlated with the stomatal index. Finally, the general pattern of structural variation under different CO2 concentrations was proposed, and their implication to the research of global change was discussed as well.  相似文献   

5.
利用大型环境生长箱研究了两种幼龄沙地优势灌木柠条 (Caraganaintermedia) 和羊柴 (Hedysarummon golicum) 对CO2 浓度倍增和土壤干旱交互作用的响应。CO2 浓度倍增并没有改善两种沙生灌木叶片的水分状况, 而土壤干旱使叶片的相对含水量 (RWC) 显著降低。在土壤水分充足条件下, CO2 浓度倍增促进两种沙生灌木植株生长, 在干旱条件下则主要促进根的生长, 提高根冠比。土壤干旱显著减少了植株生物量, 但相对促进了根的生长, 特别是显著提高了羊柴的根冠比。CO2 倍增使稳定性碳同位素组分 (δ13 C) 降低, 但土壤干旱使之增加。两种沙生灌木叶片与根部的δ13 C值呈极显著线性关系, 羊柴的斜率大于柠条的, 表明前者叶片与根部在光合产物分配上具有较高的生态可塑性, 这和干旱条件下羊柴的根冠比增加相关联。羊柴的“源库”调节特性反映了对土壤水分胁迫具有较高的耐性。  相似文献   

6.
宁南山区典型植物根际与非根际土壤微生物功能多样性   总被引:8,自引:0,他引:8  
安韶山  李国辉  陈利顶 《生态学报》2011,31(18):5225-5234
选择宁南山区9种典型植物的根际与非根际土壤为研究对象,采用Biolog方法对土壤微生物功能多样性进行了研究。结果表明:9种不同植物根际土壤与非根际土壤的微生物活性(AWCD)、微生物多样性指数和微生物均匀度指数均存在明显差异;除冰草外,其他各种植物的根际土壤的微生物活性AWCD、微生物多样性指数和微生物均匀度指数均比非根际土壤的高;9种典型植物根际土壤微生物主要碳源利用类型是羧酸类和氨基酸类,非根际土壤微生物主要碳源利用类型是羧酸类、胺类、氨基酸类;微生物活性、微生物多样性指数和微生物均匀度指数两两之间均达到了极显著相关,与土壤化学性质各指标之间均未达到显著相关水平。  相似文献   

7.
Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features.  相似文献   

8.
CO2浓度倍增对10种禾本科植物叶片形态结构的影响   总被引:18,自引:0,他引:18  
在CO_2正常浓度(350μL/L)和倍增(700μL/L)条件下,对小麦(Triticum aestivum L.)、半野生小麦(T.aestivum ssp.tibeticum)、大麦(Hordeum vulgare L.)、野大麦(H.brevisubulatum(Trin.)Link)、水稻(Oryza sativa L.)、野生稻(O.meyeriana subsp.granulata)、谷子(Setaria italica(L.)Beauv)、狗尾草(S.viridis (L.)Beauv)、高粱(Sorghum vulgare Pers.)和玉米(Zea mays L.)等10种禾本科植物幼苗期叶的形态结构进行比较研究。结果表明,在CO_2浓度倍增条件下,除野大麦和玉米外,其它几种禾本科植物的叶片厚度普遍增加;表皮细胞密度下降(野大麦和谷子的远轴面除外)。其中C_3种类的平均气孔密度和气孔指数下降,C_4种类则呈相反趋势。在CO_2浓度倍增条件下,栽培种类表皮细胞密度和维管束鞘细胞中的叶绿体数明显增加,野生种类则呈相反趋势。气孔密度与气孔指数基本呈正相关。  相似文献   

9.
Over-grazing and large-scale monocultures on the Loess plateau in China have caused serious soil erosion by water and wind. Grassland revegetation has been reported as one of the most effective counter measures. Therefore, we investigated soil aggregation, aggregate stability and soil microbial activities as key parameters for soil remediation through grassland revegetation. The results showed that soil microbial biomass carbon (Cmic) and microbial biomass nitrogen (Nmic) increased under revegetated grass communities compared to cropland and overgrazed pastures and were higher in surface layers (0–10 cm) than in the subsurface (10–20 cm). Although there are variations between the four investigated grassland communities, their values were 10 to 50 times higher in comparison to the cropland and overgrazed pastures, similar to the increase in soil enzyme activities, such as β-glucosidase and β-glucosaminidase. Soil aggregate stability (SAS) showed clear differences between the different land uses with two main soil aggregate fractions measured by ultra sound: < 63 μm and 100–250 μm, with approximately 70% and 10% of the total soil volume respectively. We also found positive correlations between SAS and soil microbial parameters, such as Cmic, Nmic, and soil enzyme activities. From this, we concluded that revegetation of eroded soils by grasses accelerates soil rehabilitation.  相似文献   

10.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

11.
贾夏  韩士杰  周玉梅 《应用生态学报》2004,15(10):1842-1846
以连续5年在生长季以不同浓度CO2(700和500μmol·mol^-1)处理的长白赤松和红松幼苗为研究对象。进行了土壤微生物生物量C、纤维素分解月动态以及过氧化氢酶活性动态研究.结果表明,在秋季。红松和长白赤松土壤微生物生物量C在不同浓度CO2处理箱的大小顺序均为:对照箱>500μmol·mol^-1箱>700μmol·mol^-1箱;红松和长白赤松土壤5和10cm层在不同浓度CO2处理下,其纤维素分解强度的月动态均表现出一定的规律性,且各处理之间在每个月份中也表现出一定的规律性;在生长季,红松和长白赤松土壤纤维素分解强度在5和10cm层均表现为500μmol·mol^-1 CO2处理下较700μmol·mol^-1 CO2处理下高;红松和长白赤松土壤过氧化氢酶活性在不同浓度CO2处理之间均表现出一定的规律性。且各处理的月动态变化也呈现出一定的规律性  相似文献   

12.
大气CO2浓度倍增对植物暗呼吸的影响   总被引:9,自引:0,他引:9  
以长期生长于350和700μmolCO_2·mol~(-1)空气的开顶式培养室的杜仲(Eucommia ulmoides Oliv.)、紫花苜蓿(Medicago sativa L.)、玉米(Zea mays L.)等10种植物的离体成熟叶片或整株为材料,研究不同测定温度(15~35℃)下,CO_2浓度倍增对植物暗呼吸的影响。结果表明:在较低温度(15℃、20℃)下,CO_2浓度倍增对植物暗呼吸没有显著效应,在较高温度(30℃、35℃)下多数被测植物的暗呼吸显著增强。讨论了实验所得结果在未来全球气候变化中的可能的意义。  相似文献   

13.
CO2浓度升高和施氮条件下小麦根际呼吸对土壤呼吸的贡献   总被引:4,自引:0,他引:4  
Kou TJ  Xu XF  Zhu JG  Xie ZB  Guo DY  Miao YF 《应用生态学报》2011,22(10):2533-2538
依托FACE技术平台,采用稳定13C同位素技术,通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上,研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响.结果表明:种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低,CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2,HN)与拔节、孕穗期(施氮量为150 kg·hm-2,LN)土壤排放CO2的δ13C值,显著提高了孕穗、抽穗期的根际呼吸比例.拔节至成熟期,根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48% (HN)和21% ~48% (LN),在正常CO2浓度下为20% ~36% (HN)和19%~32%(LN).不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同,CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著.  相似文献   

14.
Spring barley ( Hordeum vulgare L. cv. Scarlett) was grown at two CO2 levels (400 vs. 700 ppm) combined with two ozone regimes (ambient vs. double ambient) in climate chambers for four weeks, beginning at seedling emergence. Elevated CO2 concentration significantly increased aboveground biomass, root biomass, and tiller number, whereas double ambient ozone significantly decreased these parameters. These ozone-induced reductions in growth parameters were strongly overridden by 700 ppm CO2. The elevated CO2 level increased C : N ratio of the leaf tissue and leaf starch content but decreased leaf protein levels. Exposure to double ambient ozone did not affect protein content and C : N ratio but dramatically increased leaf starch levels at 700 ppm CO2. Resistance against Drechslera teres (Sacc.) Shoemaker was increased in leaves grown at double ambient ozone but was less obvious at 700 ppm than at 400 ppm CO2. Constitutive activities of beta-1,3-glucanase and chitinase were significantly higher in leaves grown at double ambient ozone compared to ambient ozone levels. The sum of methanol-soluble and alkali-released cell wall-bound aromatic metabolites (i.e., C-glycosylflavones and several structurally unidentified metabolites) and lignin contents did not show any treatment-dependent differences.  相似文献   

15.
Aims Some shade-tolerant understory tree species such as mountain maple (Acer spicatum L.) exhibit light-foraging growth habits. Changes in environmental conditions, such as the rise of carbon dioxide concentration ([CO2]) in the atmosphere and soil warming, may affect the performance of these species under different light environments. We investigated how elevated [CO2] and soil warming influence the growth and biomass responses of mountain maple seedlings to light availability.Methods The treatments were two levels of light (100% and 30% of the ambient light in the greenhouse), two [CO2] (392 μmol mol-1 (ambient) and 784 μmol mol-1 (elevated)) and two soil temperatures (T soil) (17 and 22°C). After one growing season, we measured seedling height, root collar diameter, leaf biomass, stem biomass and root biomass.Important findings We found that under the ambient [CO2], the high-light level increased seedlings height by 70% and 56% at the low T soil and high T soil, respectively. Under the elevated [CO2], however, the high-light level increased seedling height by 52% and 13% at the low T soil and high T soil, respectively. The responses of biomasses to light generally followed the response patterns of height growth under both [CO2] and T soil and the magnitude of biomass response to light was the lowest under the elevated [CO2] and warmer T soil. The results suggest that the elevated [CO2] and warmer T soil under the projected future climate may have negative impact on the colonization of open sites and forest canopy gaps by mountain maple.  相似文献   

16.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

17.
红豆草与土壤氮含量对大气二氧化碳浓度升高的响应   总被引:1,自引:0,他引:1  
在封闭的植物培养箱中,通过盆栽实验,研究了红豆草和土壤氮含量对CO2浓度增加的响应.结果表明,与正常CO2浓度(355~370 μmol·mol-1)相比,CO2浓度升高(700 μmol·mol-1),植物生物量增加25.1%(P<0.01),但植物体氮浓度降低25.3%(P<0.001),植物全氮没有显著的变化.经3个月盆栽实验后,与原始土壤相比,两种CO2浓度处理土壤全N、NO3--N和NH4+-N都有所降低,而土壤微生物氮则显著增加,这可能与植物生长有关.不同CO2浓度处理土壤NH4+-N浓度基本一致,但在高CO2浓度下,土壤NO3--N浓度显著降低,而微生物生物氮显著增加.对整个土壤-植物系统而言,盆栽实验后,整个系统全氮有少量增加,但变化不显著,特别是在高CO2浓度条件下,土壤-植物系统全氮最大,这可能与培养材料红豆草为豆科植物,而且在高CO2浓度下生物量增加,导致氮的固定量增加有关.  相似文献   

18.
In the present study, soil biomass activity, organic carbon storage, and turnover times were compared in adjacent mediterranean biotopes with different forest vegetation, to analyze the effects of litter diversity and soil management protocols on microbial decomposition rates. Samples of forest soil from four vegetation types were collected at depths of 0-20 and 20-40 cm in the 'Tenuta Presidenziale di Castelporziano' Reserve on the Tyrrhenian coast, near Rome (Italy). The samples were incubated under standard laboratory conditions (-33 kPa water tension, and 30 degrees C), in order to compare the microbial activity independently of temperature and humidity. The CO2-C accumulation curves over a 28-d incubation period showed substantially different kinetics between the samples; in particular, soils with above-ground diversity were characterised by high mineralization activity when compared with those sampled under monospecific vegetation. For all the sites, statistically significant linear correlation was observed between nitrogen concentration and potentially mineralizable carbon (r = 0.97), and microbial biomass carbon (Cmic) to total organic carbon (Corg) ratio and the microbial metabolic quotient q(CO2) (r = -0.96). The q(CO2), indicator of the stability of ecosystems, was enhanced by plant diversity, while the Cmic:Corg ratio was reduced.  相似文献   

19.
The effect of doubled CO2 on the chlorophyll-protein complexes of the leaves of soybean ( Glycine max L., Ca plants), cucumber ( Cucumis sativus L., C3 plant), millet ( Setaria italica (L.) Beauv., not a very typical C4 plant) and corn (Zea mays L. ,C4 plant) was studied. Experi- mental plants were pot-cultured in polyethylene membrane (or glass) open top cultured chambers. After sowing, C02 was kept immediately either at ambient ( (350 ± 10) x 10-6) concentration for the control or at doubled CO2 ((700 ± 10) x 10-6) concentration for the treatment chambers. The chlorophyll-protein complexes of the thylakoid membrane of the plants were resolved by disk SDS- PAGE. The results showed that after doubled CO2 treatment,either in the soybean and cucmnber,or in the millet, the quantity of polymer state of PS Ⅱ light-harvesting chlorophyll a/b-protein complex (LHC Ⅱ ) had increased as the monomer state of LHC Ⅱ decreased. But such response to doubled CO2 was not found in corn, the C4 plant. The change of the state of LHC Ⅱ in soybean etc. might be an adaptive effect of plant photosynthetic mechanism to the long term elevated CO2. Thus it could increase the efficiency of the absorption, transfer and conversion of light energy in plant photosynthesis, and support the high efficiency of photosynthetic carbon assimilation.  相似文献   

20.
This study reports the effects of long-term elevated atmospheric CO2 on root production and microbial activity, biomass, and diversity in a chaparral ecosystem in southern California. The free air CO2 enrichment (FACE) ring was located in a stand dominated by the woody shrub Adenostoma fasciculatum. Between 1995 and 2003, the FACE ring maintained an average daytime atmospheric CO2 concentration of 550 ppm. During the last two years of operation, observations were made on soil cores collected from the FACE ring and adjacent areas of chaparral with ambient CO2 levels. Root biomass roughly doubled in the FACE plot. Microbial biomass and activity were related to soil organic matter (OM) content, and so analysis of covariance was used to detect CO2 effects while controlling for variation across the landscape. Extracellular enzymatic activity (cellulase and amylase) and microbial biomass C (chloroform fumigation-extraction) increased more rapidly with OM in the FACE plot than in controls, but glucose substrate-induced respiration (SIR) rates did not. The metabolic quotient (field respiration over potential respiration) was significantly higher in FACE samples, possibly indicating that microbial respiration was less C limited under high CO2. The treatments also differed in the ratio of SIR to microbial biomass C, indicating a metabolic difference between the microbial communities. Bacterial diversity, described by 16S rRNA clone libraries, was unaffected by the CO2 treatment, but fungal biomass was stimulated. Furthermore, fungal biomass was correlated with cellulase and amylase activities, indicating that fungi were responsible for the stimulation of enzymatic activity in the FACE treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号