首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
海洋微型浮游动物对浮游植物和初级生产力的摄食压力   总被引:20,自引:5,他引:15  
张武昌  王荣 《生态学报》2001,21(8):1360-1368
综述了国际上研究微型浮游动物对浮游植物和初级生产力摄食的方法,并重点介绍了稀释法的理论和在实践中遇到的问题。各种方法的微型浮游动物对浮游植物和初级生产力摄食压力的估计表明,微型浮游动物在海洋生态系统中的扮演重要角色。  相似文献   

2.
北部湾北部海域夏季微型浮游动物对浮游植物的摄食压力   总被引:1,自引:0,他引:1  
2011年8月份于北部湾北部海域5个观测站位获得的分层水样,分析了表层叶绿素a含量和表层微型浮游动物丰度以及类群组成;同时于现场采用稀释培养法研究了该海域浮游植物生长率(μ)和微型浮游动物的摄食率(g)。分析和测定结果表明:调查海区的微型浮游动物丰度400—1167个/L,类群组成以无壳纤毛虫为主;浮游植物的生长率为-1.50—1.13 d-1,微型浮游动物摄食率为0.33—1.08 d-1;推算微型浮游动物对浮游植物现存量以及初级生产力的摄食压力分别为28.1%—66.0%和-7.4%—438.4%。相对于中国其他海区,8月份北部湾北部海域微型浮游动物摄食速率处于中等水平。调查期间,广西沿海高生产力海区,浮游植物生长率大于微型浮游动物动物的摄食率,浮游植物生物量处于积累期;涠洲岛以南海域,浮游植物生产力较低,微型浮游动物摄食作用是控制浮游植物生长的重要因素。  相似文献   

3.
2008年8月底到10月初,用现场稀释法对虾塘中≤200 μm、≤100 μm和≤20 μm 3个粒级的微型浮游动物对浮游植物的摄食压力进行了研究。共进行了三次培养实验,结果表明:浮游植物的生长率为0.0834~0.4498 d-1,微型浮游动物的摄食率为0.1212~0.2998 d-1,微型浮游动物摄食率对浮游植物生长率比值(g:k)为0.4271~3.4901,占浮游植物现存量的11.41%~25.90%,对初级生产力的摄食压力为48.20%~314.69%。≤20 μm微型浮游动物的摄食率、对浮游植物现存量和初级生产力的摄食压力,占微型浮游动物(≤200 μm)的相关比例范围为73.85%~97.69%、76.67%~97.91%、78.87%~98.59%。这表明≤20 μm微型浮游动物比≥20 μm的微型浮游动物在对虾养殖中后期虾塘能量流动和物质循环方面起到更重要的作用。  相似文献   

4.
海洋细菌生产力调控机制研究进展   总被引:1,自引:0,他引:1  
综述了海洋细菌生产力的生态学意义,细菌生产力在海洋生态系统能量流动中具有重要作用;介绍了国内外的研究进展,我国细菌生产力的研究主要集中在东海、黄海海域,而面积最大的南海研究尚少。分析了海洋细菌生产力的调控机制,温度、DOM、无机营养盐﹑微型浮游动物摄食等都对其产生影响,海水中的DOM主要由可溶性糖类和可溶性氨基酸组成,不同种类的细菌对DOM的吸收并不一致,海水温度直接影响细菌的新陈代谢能力,对细菌生产力大小产生很大影响,浮游动物的摄食对细菌生物量产生抑制作用,但浮游动物在摄食中通过DOM的释放和对无机盐的再生,在海洋生态系统的物质循环也起到了重要作用,一定程度上提高细菌的生产活性。在不同海域不同的因子起到不同的调控作用。  相似文献   

5.
孙军  宋书群  王丹  徐兆礼 《生态学报》2007,27(8):3302-3315
2005年4月27日至5月30日在东海有害藻华高发区的6个典型站位采样,结合稀释法实验和Frost的直接计量法研究了中型浮游动物对浮游植物和微型浮游动物群落的现场摄食速率,并对中华哲水蚤(Calanus sinicus)的食物组成、中型浮游动物和微型浮游动物对浮游植物群落的摄食压力进行了估算。研究结果表明春季调查区:中华哲水蚤对浮游植物的物种比摄食率介于0.01~8.43d-1,平均值为(2.72±2.14)d-1。中华哲水蚤对浮游植物的物种摄食速率介于0.05~838.23cells ind.-1d-1,平均值为(52.72±154.21)cells ind.-1d-1,对几种有害藻华原因生物的摄食速率较高。中华哲水蚤对浮游植物物种摄食速率具有食物密度依赖性,在低浮游植物丰度下,其摄食速率会随着浮游植物丰度的增加而增加,达到一定阈值后随着浮游植物丰度增加而逐渐降低。中型浮游动物群落对浮游植物群落碳摄食速率介于0.53~4.97ngC L-1d-1,平均值为(2.16±1.63)ngC L-1d-1。微型浮游动物对浮游植物群落物种平均碳摄食速率介于0.04~13.20ngC ind.-1d-1,平均值为(2.91±5.22)ngCind.-1d-1。微型浮游动物群落对浮游植物群落碳摄食速率介于61.07~8632.85ngC L-1d-1,平均值为(2801.01±4198.46)ngC L-1d-1。分析比较中型浮游动物和微型浮游动物对浮游植物现存量摄食压力表明,海区中微型浮游动物的摄食压力要远高于中型浮游动物,介于95.59%~99.98%,平均值为97.88%±2.33%。调查海区中型浮游动物还通过对微型浮游动物的摄食影响浮游植物生长。  相似文献   

6.
夏季胶州湾微型浮游动物摄食初步研究   总被引:21,自引:1,他引:20  
2002年6月至7月间对胶州湾内、外和港口3个典型站位进行了微型浮游动物对浮游植物的摄食研究.按陆基半现场方式进行了4次稀释法实验,对湾外相同的站位进行了两次实验,对湾内和港口各进行了一次实验,获取了研究站位浮游植物和微型浮游动物种类、丰度、体积转换浮游植物碳含量、碳/叶绿素比率、浮游植物净生长率、微型浮游动物摄食率、对潜在初级生产力的摄食压力、对浮游植物现存量的摄食压力以及碳摄食通量等参数.湾外和湾内站位的浮游植物组成相似,优势种为新月柱鞘藻(Cylindrotheca closterium)和中肋骨条藻(Skeletonema costatum),港口浮游植物优势种类为中肋骨条藻、浮动湾角藻(Eucampia zodiacus)和旋链角毛藻(Chaetoceros curvisetus).湾外微型浮游动物的优势种为百乐拟铃虫(Tintinnopsis beroidea),而在湾内为百乐拟铃虫和急游虫(Strombidium sp.),港口主要为急游虫,也有少数的百乐拟铃虫.微型浮游动物对浮游植物的摄食率和对潜在初级生产力的摄食压力,在湾内最高,其次在湾外,港口最低.微型浮游动物对浮游植物的摄食率,在湾外,分别为0.96和1.20d^-1,在湾内为1.33d^-1,在港口为0.36d^-1.微型浮游动物对潜在初级生产力的摄食压力,在湾外,分别为74%和84%,在湾内为93%,在港口为53%.微型浮游动物的碳摄食通量在港口最高达到281mgC·m^-3·d^-1,在湾内为102mgC·m^-3·d^-1,在湾外最低范围在31~49mgC·m^-3·d^-1.浮游植物的细胞大小和两种微型浮游动物的摄食习性的不同是造成研究站位微型浮游动物摄食率和摄食压力不同的主要原因.同世界其它内湾相比,胶州湾微型浮游动物的摄食压力处于中等水平。  相似文献   

7.
河口浮游动物生态学研究进展   总被引:28,自引:4,他引:24  
综述了国内外有关河口浮游动物种类组成、时空分布、生物量及其环境影响因素等方面的若干研究进展。河口地区潮流、径流共存,是陆海相互作用的集中地带,环境因子复杂多变,生态环境敏感脆弱。因此,研究河口浮游动物群落结构的时空变化有助于更好地揭示近海生态系统的特征。河口水域重要的浮游动物有原生动物、轮虫、桡足类、糠虾、水母等。环境因素和人类的活动对浮游动物种类组成和时空分布具有重要影响,河口浮游动物群落结构变化主要受到食物、温度、盐度、动物摄食以及径流等因素的影响,盐度是决定浮游动物分布的关键性非生物因子。近年来的研究表明,微型浮游动物(原生动物,轮虫和无节幼体)在河口生态系统中占有重要地位,是微食物网和传统食物网连接的关键环节。浮游生物网是采集浮游动物样品的主要工具,对研究结果有重要影响,我国许多学者使用浅水Ⅰ型或Ⅱ型浮游生物网(网孔为507μm和169μm)采集样品,导致小型和微型浮游动物(如无节幼体)逃逸,研究结果被严重低估,而这些小型和微型浮游动物是幼鱼的重要开口饵料,因此合适的浮游生物网对于研究浮游动物极其重要。并对今后我国河口浮游动物生态学研究中值得关注的科学问题进行了探讨。  相似文献   

8.
DNA条形码及其在海洋浮游动物生态学研究中的应用   总被引:3,自引:1,他引:2  
浮游动物的准确鉴定是浮游动物生态学研究的基础.传统的基于形态特征的鉴定不仅费时费力,而且部分类群特别是浮游幼体由于形态差异细微,鉴定存在困难,导致物种多样性被低估.DNA条形码(DNA barcodes)技术为浮游动物物种鉴定提供了一个有力工具,已迅速应用于海洋浮游动物生态学研究.本文介绍了DNA条形码的基本概念、优势及局限性,总结了该技术(主要是基于线粒体细胞色素C氧化酶第一亚基(mtCOI)基因序列片段的DNA条形码)在海洋浮游动物物种快速鉴定、隐种发现、营养关系研究、生物入侵种监测、群落历史演变反演、种群遗传学以及生物地理学中的成功应用.随着DNA条形码数据库信息量覆盖率的不断提高和新一代测序技术的快速发展,DNA条形码将提供除了种类鉴定外更加丰富的信息,从而帮助人们更好地理解海洋浮游动物的多样性及其在生态系统中的功能,推动海洋浮游动物生态学的发展.  相似文献   

9.
春季赤潮频发期东海微型浮游动物摄食研究   总被引:50,自引:4,他引:46  
2002年4~5月在东海长江口及其邻近水域的8、11、14、23和28号5个典型站位采样。用现场稀释法对春季东海水域浮游植物的生长率和微型浮游动物对浮游植物的摄食压力等方面进行了研究.结果表明,微型浮游动物的摄食行为在东海赤潮过程起到关键作用.各站位微型浮游动物主要以急游虫、红色中缢虫和夜光藻为主,在种类上砂壳纤毛虫是主要的类群.微型浮游动物的摄食速率范围在0.28~1.13d-1,对浮游植物现存量的摄食压力范围在35.14%~811.69%。对浮游植物潜在初级生产力的摄食压力范围在74.04%~203.25%,对浮游植物碳的摄食率范围在9.58~97.91μg·L-1·d-1,靠近岸边的站位,微型浮游动物的摄食速率、对浮游植物现存量的摄食压力和对浮游植物碳的摄食率相对较高。而远离岸边的站位对浮游植物潜在初级生产力的摄食压力却较高.与世界其它海区比较此水域微型浮游动物摄食压力处于较高水平.急游虫是控制东海主要赤潮原因生物具齿原甲藻生长的关键种类.  相似文献   

10.
香港水域夏季微型浮游动物摄食研究   总被引:25,自引:4,他引:21  
20 0 0年 8月在香港牛尾海 ( A站 )和龙鼓水道 ( B站 )的 2个典型站位采样 ,用半现场的稀释法研究了夏季香港水域浮游植物的生长率和微型浮游动物对浮游植物的摄食压力等。结果表明 :A、B站浮游植物主要以硅藻为主 ,但 A站甲藻比重比 B站要高。A站 <5 μm的微型浮游植物比 B站要少 ,从细胞大小上 B站的浮游植物更易被微型浮游动物所摄食。A站微型浮游动物类群主要以异养鞭毛藻为主 ,而 B站为砂壳纤毛虫 ,其细胞丰度分别为 770和 62 0 ind./L。 A、B站浮游植物碳 /叶绿素 a浓度比率分别为 2 7.1 5和88.66。 A站浮游植物的内禀生长率相似于 B站 ,分别为 1 .0 4和 0 .98d- 1。浮游植物在 A站的净生长率是0 .33d- 1,而在 B站则出现了负增长 ,其净生长率是 - 0 .5 8d- 1。微型浮游动物在 A、B站的摄食率分别为0 .71和 1 .5 6d- 1,摄食压力分别占到了浮游植物现存量的 1 43.7%和 2 0 9.7% ,初级生产力的 78.6%和1 2 6.6% ,对浮游植物碳的摄食率分别达到 35 1和 5 5 2 μg C/( L·d)。A站的浮游植物生长要高于 B站 ,B站的微型浮游动物摄食压力要明显高于 A站。与其它海区比较香港水域微型浮游动物摄食压力处于中等水平。黑暗长时间培养实验的结果表明此水域微型浮游动物摄食率稀释法实验应在适量添加营养盐并在  相似文献   

11.
Liu Z S  Wang C S  Zhang Z N  Liu C G  Yang G M 《农业工程》2006,26(12):3931-3940
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d?1 to 0.89 d?1, whereas grazing rate of microzooplankton ranged between 0.18 d?1 and 0.68 d?1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d?1 to 49.1% d?1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d?1 to 83.6% d?1 in different seasons.  相似文献   

12.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

13.
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d−1 to 0.89 d−1, whereas grazing rate of microzooplankton ranged between 0.18 d−1 and 0.68 d−1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d−1 to 49.1% d−1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d−1 to 83.6% d−1 in different seasons.  相似文献   

14.
东海春季水华期浮游植物生长与微型浮游动物摄食   总被引:6,自引:0,他引:6  
孙军  宋书群 《生态学报》2009,29(12):6429-6438
2005年4~6月在东海有害水华频发区14个站位采样,通过现场稀释法实验对春季东海水域浮游植物比生长率和微型浮游动物比摄食率进行了研究.结果表明东海有害水华频发区浮游植物群落以甲藻为优势.浮游植物比生长率在水华爆发前相对较低,平均为1.18 d~(-1);进入水华期后比生长率明显升高,但在水华站位随现存量增加而降低;非水华区比生长率近岸高、远岸低.微型浮游动物主要以急游虫和桡足类幼体为主,而种类上以砂壳纤毛虫居多.微型浮游动物比摄食率在水华爆发前波动较大,介于0.53~1.73 d~(-1),平均为0.90 d~(-1);在水华区比摄食率较为稳定,浮游植物比生长率的降低导致群落净生长率持续下降;在非水华区,比摄食率整体较高,近岸低而远岸高.微型浮游动物的摄食对浮游植物群落的生长有一定的控制作用,但在水华爆发后这种控制作用将减弱.  相似文献   

15.
This study documents the monsoonal and lunar effects on species composition and abundance of microzooplankton in a tropical estuary. We investigated microzooplankton abundance in relation to the various environmental and biotic parameters, sampled in the Matang mangrove (Malaysia) from April 2013 to February 2014. A total of 39 microzooplankton taxa comprising four major groups, i.e. loricate ciliates (37.72%), aloricate ciliates (29.46%), dinoflagellates (24.33%) and meroplanktonic nauplii (8.49%) were identified. The loricate ciliates were the most diverse group with 31 taxa recorded. Four major species of loricate ciliates were identified, i.e. Tintinnopsis beroidea, Tintinnopsis rotundata, Stenosemella avellana and Tintinnidium primitivum, while Strombidiidae and Strobilidiidae dominated the aloricate ciliates. Although small loricate ciliates were ubiquitous, redundancy analysis shows marked shifts in microzooplankton community structure, from one that was dominated by loricate ciliates during the drier SW monsoon, to aloricate ciliates at the onset of the wet NE monsoon, and then to dinoflagellates towards the end of the drier NE monsoon period. These shifts were associated with rainfall, dissolved inorganic nutrients, salinity, temperature and microbial food abundance. There was no clear lunar effect on abundance of microzooplankton except for Favella ehrenbergii and copepod nauplii, which were more abundant during neap than spring tides.  相似文献   

16.
Macrozooplankton and microzooplankton effects on the phytoplanktonwere measured in situ in a eutrophic lake. Indigenous phytoplanktonwere incubated for 5 days in 301 mesocosms with either the macro-and microzooplankton (complete), microzooplankton only (micro)or no zooplankton (none). Changes in phytoplankton biovolumewere investigated. Rotifer densities became significantly higherin the ‘micro’ treatment than in the ‘complete’and ‘none’ treatments. Total algal biovolume changedlittle in the ‘complete’ and ‘none’treatments, but increased significantly in the ‘micro’treatment. The results suggest that macrozooplankton (Daphniamagna) suppressed it and microzooplankton (Keratella cochlearis)enhanced it. They had opposite net effects on the phytoplankton.Suppression of microzooplankton by Daphnia probably had an indirectnegative effect on the phytoplankton.  相似文献   

17.
《Harmful algae》2009,8(1):158-166
Links between eutrophication, plankton community structure, microzooplankton grazing and dinoflagellate abundance were investigated in two tributaries of the Chesapeake Bay, the Choptank and Patuxent Rivers (MD, USA). Sampling and experiments were conducted during the spring of consecutive dry (below average freshwater flow) and wet (above average freshwater flow) years. During the wet year (2003), dissolved inorganic nitrogen, phytoplankton, and copepod biomass, but not microzooplankton abundance, were greater than in the dry year. In 2003, but not 2002, small cell size photosynthetic dinoflagellates were abundant and blooms occurred in both rivers. Average potential microzooplankton grazing pressure on small dinoflagellates was spatially and temporally variable, but was not significantly different between years. Our data suggest that the variability in microzooplankton grazing pressure provided “windows of opportunity” for net growth of dinoflagellates in response to nutrient loading. The lack of net population growth of micrograzers in response to increases in dinoflagellate prey allowed dinoflagellate blooms to reach relatively high densities, however grazing also appeared to be important in limitation or demise of some blooms. We hypothesize that uncoupling of micrograzer–prey dynamics was partly due to strong top-down control by copepods of microzooplankton in the proportionately more eutrophic year, and perhaps also due to inhibition of microzooplankton grazing/growth once dinoflagellate densities are high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号