首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
植食性浮游桡足类摄食生态学研究进展   总被引:17,自引:4,他引:13  
李超伦  王克 《生态学报》2002,22(4):593-596
由于浮游动物在调节海洋生物生产中的关键作用,对其摄食生态学的研究一直是海洋生态学研究的重点。总结了近年关于浮游动物主要类群-桡足类对浮游植物摄食的研究进展及其在海洋生态系统动力学研究中的重要意义。主要包括:影响植食怀桡足类摄食强度的主要因素,饵料对于桡足类种群变动的影响;现场测定桡足类摄食率的方法以及海洋生态系统动力学研究中需要关注的问题。  相似文献   

2.
薛银浩  刘卓苗  王昊  赵建 《应用生态学报》2020,31(11):3969-3978
人类活动排放大量的CO2通过海气界面进入海洋,打破原有海水碳酸盐平衡进而造成海洋酸化(OA)。OA会影响海水和海洋污染物的理化性质,进而对生活在海洋表层的浮游藻类生理过程产生显著调控作用。海洋微藻作为海洋中主要的初级生产者,其生理功能与过程的正常进行对于海洋生态系统具有重要作用。本文综述了OA对海洋微藻光合固碳、钙化过程、固氮作用3个关键生理过程的调控作用和具体机制,总结了OA条件下,环境因素(如太阳辐射、温度、营养元素)对微藻生理过程和生长的影响,以及OA通过改变典型海洋污染物(如有机污染物、重金属、微塑料)的环境行为而对微藻生理过程的调控作用。最后,结合研究现状,对未来需要开展的研究方向进行展望。本文为进一步了解OA对海洋生态系统的潜在影响提供了重要信息。  相似文献   

3.
定量分析滨海湿地近岸海域水质环境与浮游动物群落结构之间的关系对揭示海水水质环境健康状态具有重要意义。2019年12月在鸭绿江口湿地国家级自然保护区近岸海域开展了浮游动物和水环境因子调查,运用冗余分析和结构方程模型等方法探讨了水质环境对冬季浮游动物群落结构的影响。研究区共鉴定出浮游动物14种以及浮游幼虫5大类,桡足类最多占比52.63%;保护区不同功能分区间浮游动物群落结构总体差异不大,多样性指数、均匀度指数和丰富度指数平均值分别为1.34、0.51和0.59;浮游动物的种群分布与海水化学需氧量、溶解性无机氮、浮游植物群落多样性指数和铜元素含量关系显著;结构方程模型模拟结果表明,海水富营养化水平对浮游动物丰富度的效应系数为-0.26,具有显著的直接影响(P=0.01),重金属污染水平通过影响浮游植物丰富度(效应系数为-0.41,P<0.001)间接对浮游动物丰富度产生作用(间接效应系数为-0.2)。研究结果将有助于深化对海水环境和浮游动物群落结构协同演变过程的认识,为滨海湿地近岸海洋生态系统科学管理提供理论支撑。  相似文献   

4.
夏、秋季长江口及毗邻海域浮游动物的分布与变化   总被引:4,自引:1,他引:3  
浮游动物在整个海洋生态系统中起着非常重要的调控作用,它通过摄食控制浮游植物的数量和分布,同时又是许多经济鱼类的主要饵料,因而其分布与变化可以直接影响渔业资源状况[1,2].  相似文献   

5.
北部湾北部海域夏季微型浮游动物对浮游植物的摄食压力   总被引:1,自引:0,他引:1  
2011年8月份于北部湾北部海域5个观测站位获得的分层水样,分析了表层叶绿素a含量和表层微型浮游动物丰度以及类群组成;同时于现场采用稀释培养法研究了该海域浮游植物生长率(μ)和微型浮游动物的摄食率(g)。分析和测定结果表明:调查海区的微型浮游动物丰度400—1167个/L,类群组成以无壳纤毛虫为主;浮游植物的生长率为-1.50—1.13 d-1,微型浮游动物摄食率为0.33—1.08 d-1;推算微型浮游动物对浮游植物现存量以及初级生产力的摄食压力分别为28.1%—66.0%和-7.4%—438.4%。相对于中国其他海区,8月份北部湾北部海域微型浮游动物摄食速率处于中等水平。调查期间,广西沿海高生产力海区,浮游植物生长率大于微型浮游动物动物的摄食率,浮游植物生物量处于积累期;涠洲岛以南海域,浮游植物生产力较低,微型浮游动物摄食作用是控制浮游植物生长的重要因素。  相似文献   

6.
海洋微型浮游动物对浮游植物和初级生产力的摄食压力   总被引:20,自引:5,他引:15  
张武昌  王荣 《生态学报》2001,21(8):1360-1368
综述了国际上研究微型浮游动物对浮游植物和初级生产力摄食的方法,并重点介绍了稀释法的理论和在实践中遇到的问题。各种方法的微型浮游动物对浮游植物和初级生产力摄食压力的估计表明,微型浮游动物在海洋生态系统中的扮演重要角色。  相似文献   

7.
浮游被囊动物的分类及其生态学研究进展   总被引:2,自引:0,他引:2  
被囊动物(Tunicata)是一类低等脊索动物,包括3个纲:有尾纲、海樽纲和海鞘纲;全部生活在海洋里,其中有尾纲和海樽纲营浮游生活。综述了国内外浮游被囊动物分类和生态研究的现状和进展,综述介绍了有尾纲和海樽纲的分类依据、研究现状、趋势和在海洋生态系统中的作用。浮游被囊动物是热带和亚热带海域重要的浮游动物类群,种类和数量的分布变化受物理和生物环境因素的影响;它一方面大量摄食浮游细菌和微小浮游植物,另一方面被一些经济动物摄食,因此在海洋食物链的传递和生态系统的物质循环中占有重要位置。  相似文献   

8.
海水颗粒有机碳(POC)变化的生物地球化学机制   总被引:17,自引:0,他引:17  
张乃星  宋金明  贺志鹏 《生态学报》2006,26(7):2328-2339
海水中颗粒有机碳(POC)的生物地球化学行为是海洋碳循环研究的重要组成部分,近年来的研究取得了重大进展,主要阐述了海水POC生物地球化学研究的概况.海水POC在海洋中的分布受各种物理、化学、生物过程等多种因素的影响.不同海域、不同水层POC的含量与组成差异很大,在水平分布上,近岸高于远海,垂直分布上,表层高于中下层,含量通常为几十到几百个μg/L,主要由陆源碎屑、浮游植物、浮游动物及其新陈代谢产物和死亡残体组成,海水POC可来源于陆源、海源(海洋生物的生产)、海底沉积物的再悬浮以及溶解有机碳(DOC)的转化,其中海源是其主要贡献者.海水POC与生物过程的关系密切,海洋生物既是POC的组成部分也是POC的重要生产者,通过摄食-代谢过程产生碎屑POC,通过垂直洄游促进POC的向下沉降,通过细菌的降解将POC转化为其他形态.POC参与再循环与营养盐(特别是氮、磷、硅)之间有重要的协同作用,生命POC的新陈代谢造成了营养盐浓度的变化,反过来,营养盐浓度的变化又改变了生命POC的组成及数量;无生命的POC一方面在生物及化学作用下分解矿化释放出营养盐,及时补充了水体中氮、磷、硅等生源要素的含量,这在高生产力的珊瑚礁区尤为明显.另一方面,其又通过在沉积物中的矿化,产生吸附位点,吸附营养盐,影响着营养盐在沉积物与水体中的交换.  相似文献   

9.
海洋微型和微微型浮游生物的区域分布与影响因素   总被引:3,自引:0,他引:3  
钟瑜  黄良民 《生态科学》2008,27(3):179-185
微型和微微型浮游生物几乎存在于所有的海洋生态系统中,其群落遍布世界各大洋。在大部分海域,微型浮游生物的优势类群为鞭毛藻;原绿球藻是贫营养海域的优势类群,而聚球藻、微微型真核生物和异养细菌主要在营养盐丰富的海域出现,在热带、亚热带和温带的富营养区域占优势。温度、盐度、光照、营养盐可得性、水体稳定性和摄食压力是影响微型和微微型浮游生物的主要因素,各海域主要调控因子的不同造成了微型和微微型浮游生物类群和丰度分布的差异。本文主要综述海洋微型和微微型浮游生物类群检测方法、区域分布特点及其受环境影响的研究概况,并提出了今后的重点研究内容和发展方向。  相似文献   

10.
海洋中藻菌相互关系及其生态功能   总被引:3,自引:0,他引:3  
海洋中藻类与细菌密不可分,具有错综复杂的互作关系(如互利共生、敌对拮抗或竞争抑制等),共同构成了海洋生态系统结构与功能的重要调控者。在藻类细胞周围往往存在着特殊的藻际微环境,其中生存着独特的微生物群落,因此藻际环境成为藻菌相互作用的主战场。藻际环境中细菌群落的构建具有一定的规律。在自然生态系统中,藻菌互作影响赤潮生消动态过程,并在水质修复中具有重要作用潜力。同时,藻类和细菌作为驱动海洋固碳与储碳的主要生物因子,在海洋碳循环中具有尤为重要的作用。本文对海洋中藻菌互作关系的研究现状进行了综述,并在此基础上,对未来研究提出了几点展望。例如,目前对海洋中藻菌关系受病毒的调控作用了解甚少,值得未来深入研究。  相似文献   

11.
北冰洋海域微食物环研究进展   总被引:1,自引:0,他引:1  
何剑锋  崔世开  张芳  何培民  林凌 《生态学报》2011,31(23):7279-7286
海洋微食物环在海洋生态系统中起着重要作用.北冰洋因常年为海冰所覆盖,对微食物环的研究较为有限.现有研究表明,微食物环在北冰洋生态系统中的作用与海域和季节相关.近年来环境的快速变化、特别是夏季海冰覆盖面积的迅速减少,会对微食物环的结构和功能产生重大影响,已有研究显示其生态作用有望进一步提高.综合近年来已有的研究成果,对北冰洋微食物环的主要类群:原核生物、真核浮游植物、原生动物和浮游病毒等的基本生态特征进行了概述,讨论了各类群间的相互关系,并对未来的研究重点进行了展望.  相似文献   

12.
Abstract The effect of dissolved organic matter (DOM) and temperature on bacterial production was examined in the equatorial Pacific Ocean. Addition of glucose, glucose plus ammonium, or free amino acids stimulated bacterial production ([3H]thymidine incorporation), whereas changes in bacterial abundance were either negligible or much less than changes in bacterial production. The average bacterial growth rate also greatly increased following DOM additions, whereas in contrast, addition of ammonium alone never affected production, bacterial abundance, or growth rates. Since the large glucose effect was not observed in previous studies of cold oceanic waters, several experiments were conducted to examine DOM-temperature interactions. These experiments suggest that bacteria respond more quickly and to a greater extent to DOM additions at higher temperatures, which may explain apparently conflicting results from previous studies. We also examined how temperate affects the kinetic parameters of sugar uptake. Maximum uptake rates (Vmax) of glucose and mannose increased with temperature (Q10= 2.4), although the half-saturation constant (Km) was unaffected; Km+ S was roughly equal to glucose concentrations (S) measured by a high pressure liquid chromographic technique. Bacterial production and growth rates appear to be limited by DOM in the equatorial Pacific, and thus bacterial production follows primary production over large spatial and temporal scales in this oceanic regime, as has been observed in other aquatic systems. Although temperature may not limit bacterial growth rates in the equatorial Pacific and similar warm waters, it could still affect how bacteria respond to changes in DOM supply and help set steady-state DOM concentrations. Received: 26 July 1995; Revised: 19 January 1996  相似文献   

13.
A newly reported 16S rRNA gene-based PCR primer set was successfully applied to detect anammox bacteria from four ecosystem samples, including sediments from marine, reservoir, mangrove wetland, and wastewater treatment plant sludge. This primer set showed ability to amplify a much wider coverage of all reported anammox bacterial genera. Based on the phylogenetic analyses of 16S rRNA gene of anammox bacteria, two new clusters were obtained, one closely related to Candidatus Scalindua, and the other in a previously reported novel genus related to Candidatus Brocadia. In the Scalindua cluster, four new subclusters were also found in this study, mainly by sequences of the South China Sea sediments, presenting a higher diversity of Candidatus Scalindua in marine environment. Community structure analyses indicated that samples were grouped together based on ecosystems, showing a niche-specific distribution. Phylogenetic analyses of anammox bacteria in samples from the South China Sea also indicated distinguished community structure along the depth. Pearson correlation analysis showed that the amount of anammox bacteria in the detected samples was positively correlated with the nitrate concentration. According to Canonical Correspondence Analysis, pH, temperature, nitrite, and nitrate concentration strongly affected the diversity and distribution of anammox bacteria in South China Sea sediments. Results collectively indicated a promising application of this new primer set and higher anammox bacteria diversity in the marine environment.  相似文献   

14.
The shallow Andean North Patagonian lakes are suitable environments for the evaluation of autotrophic and heterotrophic production under a scenario of high radiation in high dissolved organic matter (DOM) systems. We aimed to study the balance between primary and bacterial production in three shallow Andean lakes, in a summer sampling (high irradiance condition). Our hypothesis is that two factors would interact: high light and high DOM, affecting bacteria and algae. We carried out experiments of bacterial production (BP) by measuring [14C]-l-leucine incorporation and PP by 14C uptake in two fractions: picophytoplankton and phytoplankton >2 μm. Cell abundance, chlorophyll a, nutrients, DOM, light, and temperature were also measured. The contribution of picophytoplankton to total primary production (PP) was, in general, very high exceeding 50%. Picophytoplankton was photosynthetically more efficient than the larger autotrophs in all lakes. We observed a decrease in PP at surface levels due the high solar irradiances, while BP was not affected. Changes in the PP:BP ratios were observed in relation to DOM content and light effect. Our data indicate that the amount of available DOM drives the balance between PP and BP. However, solar radiation should be included as an important factor since PP:BP ratio may decrease because of PP photoinhibition.  相似文献   

15.
The decomposition of dissolved organic matter (DOM) in pelagic ecosystems is mediated primarily by heterotrophic bacteria, but transformation by short-wave solar radiation may play an important role in surface waters, in particular when humic substances constitute a substantial fraction of the DOM pool. Most of the studies examining bacterial decomposition and photochemical transformation of DOM stem from limnetic and coastal marine systems and much less information is available from oceanic environments. To examine the bacterial decomposition of humic and non-humic DOM in the Southern Ocean we carried out microcosm experiments in which we measured bacterial growth on isolated fractions of humic and non-humic DOM of the size classes <3 kDa and >3 kDa. Experiments carried out at the Polar Front showed a preferential bacterial growth on non-humic DOM and in particular on the size fraction <3 kDa. Bacterial growth, measured as bacterial biomass production, on non-humic DOM accounted for 74% to 88% of the total growth on all four DOM fractions. In experiments in the Antarctic circumpolar current and the coastal current under pack ice, bacterial growth was 6× lower than at the Polar Front, and humic and non-humic DOM was consumed to equal amounts. The size fraction <3 kDa was always preferred. Experiments examining the effect of solar radiation on the release of dissolved amino acids (DAA) and carbohydrates (DCHO) and their subsequent bacterial utilization showed a stimulating effect on glucose uptake and the release of DAA at the Polar Front but an inhibition in the eastern Weddell Sea. Ultraviolet-B was the most effective component of the solar radiation spectrum tested. Effects of UV-B on glucose uptake and release of DAA were positively correlated with concentrations of humic-bound DAA. The data imply that at low concentrations, e.g., <100 nM (amino acid equivalent), UV-irradiation reduces, whereas at concentrations >100 nM UV-irradiation stimulates glucose uptake and release of DAA as compared to dark conditions.  相似文献   

16.
Interactions between bacteria and harmful algal bloom (HAB) species have been acknowledged as an important factor regulating both the population dynamics and toxin production of these algae. A marine bacterium SP48 with algicidal activity to the toxic dinoflagellate, Alexandrium tamarense, was isolated from the Donghai Sea area, China. Genetic identification was achieved by polymerase chain reaction amplification and sequence analysis of 16S rDNA. Sequence analysis showed that the most probable affiliation of SP48 was to the γ-proteobacteria subclass and the genus Pseudoalteromonas. Bacterial isolate SP48 showed algicidal activity through an indirect attack. Additional organic nutrients but not algal-derived DOM was necessary for the synthesis of unidentified algicidal compounds but β-glucosidase was not responsible for the algicidal activity. The algicidal compounds produced by bacterium SP48 were heat tolerant, unstable in acidic condition and could be easily synthesized regardless of variation in temperature, salinity or initial pH for bacterial growth. This is the first report of a bacterium algicidal to the toxic dinoflagellate A. tamarense and the findings increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

17.
Marine microbes have a pivotal role in the marine biogeochemical cycle of carbon, because they regulate the turnover of dissolved organic matter (DOM), one of the largest carbon reservoirs on Earth. Microbial communities and DOM are both highly diverse components of the ocean system, yet the role of microbial diversity for carbon processing remains thus far poorly understood. We report here results from an exploration of a mosaic of phytoplankton blooms induced by large-scale natural iron fertilization in the Southern Ocean. We show that in this unique ecosystem where concentrations of DOM are lowest in the global ocean, a patchwork of blooms is associated with diverse and distinct bacterial communities. By using on-board continuous cultures, we identify preferences in the degradation of DOM of different reactivity for taxa associated with contrasting blooms. We used the spatial and temporal variability provided by this natural laboratory to demonstrate that the magnitude of bacterial production is linked to the extent of compositional changes. Our results suggest that partitioning of the DOM resource could be a mechanism that structures bacterial communities with a positive feedback on carbon cycling. Our study, focused on bacterial carbon processing, highlights the potential role of diversity as a driving force for the cycling of biogeochemical elements.  相似文献   

18.
Previsions of a warmer ocean as a consequence of climatic change point to a 2–6°C temperature rise during this century in surface oceanic waters. Heterotrophic bacteria occupy the central position of the marine microbial food web, and their metabolic activity and interactions with other compartments within the web are regulated by temperature. In particular, key ecosystem processes like bacterial production (BP), respiration (BR), growth efficiency and bacterial–grazer trophic interactions are likely to change in a warmer ocean. Different approaches can be used to predict these changes. Here we combine evidence of the effects of temperature on these processes and interactions coming from laboratory experiments, space-for-time substitutions, long-term data from microbial observatories and theoretical predictions. Some of the evidence we gathered shows opposite trends to warming depending on the spatio-temporal scale of observation, and the complexity of the system under study. In particular, we show that warming (i) increases BR, (ii) increases bacterial losses to their grazers, and thus bacterial–grazer biomass flux within the microbial food web, (iii) increases BP if enough resources are available (as labile organic matter derived from phytoplankton excretion or lysis), and (iv) increases bacterial losses to grazing at lower rates than BP, and hence decreasing the proportion of production removed by grazers. As a consequence, bacterial abundance would also increase and reinforce the already dominant role of microbes in the carbon cycle of a warmer ocean.  相似文献   

19.
The effects of phototransformation of dissolved organic matter (DOM) on bacterial growth, production, respiration, growth efficiency, and diversity were investigated during summer in two lagoons and one oligotrophic coastal water samples from the Northwestern Mediterranean Sea, differing widely in DOM and chromophoric DOM concentrations. Exposure of 0.2-μm filtered waters to full sun radiation for 1 d resulted in small changes in optical properties and concentrations of DOM, and no changes in nitrate, nitrite, and phosphate concentrations. After exposure to sunlight or dark (control) treatments, the water samples were inoculated with the original bacterial community. Phototransformation of DOM had contrasting effects on bacterial production and respiration, depending on the water’s origin, resulting in an increase of bacterial growth efficiency for the oligotrophic coastal water sample (120%) and a decrease for the lagoon waters (20 to 40%) relative to that observed in dark treatments. We also observed that bacterial growth on DOM irradiated by full sun resulted in changes in community structure of total and metabolically active bacterial cells for the three locations studied when compared to the bacteria growing on un-irradiated DOM, and that changes were mainly caused by phototransformation of DOM by UV radiation for the eutrophic lagoon and the oligotrophic coastal water and by photosynthetically active radiation (PAR) for the mesoeutrophic lagoon. These initial results indicate that phototransformation of DOM significantly alters both bacterial metabolism and community structure in surface water for a variety of coastal ecosystems in the Mediterranean Sea. Further studies will be necessary to elucidate a more detailed appreciation of potential temporal and spatial variations of the effects measured.  相似文献   

20.
Members of the SAR11 clade often dominate the composition of marine microbial communities, yet their contribution to biomass production and the flux of dissolved organic matter (DOM) is unclear. In addition, little is known about the specific components of the DOM pool utilized by SAR11 bacteria. To better understand the role of SAR11 bacteria in the flux of DOM, we examined the assimilation of leucine (a measure of biomass production), as well as free amino acids, protein, and glucose, by SAR11 bacteria in the Northwest Atlantic Ocean. We found that when SAR11 bacteria were >25% of total prokaryotes, they accounted for about 30 to 50% of leucine incorporation, suggesting that SAR11 bacteria were major contributors to bacterial biomass production and the DOM flux. Specific growth rates of SAR11 bacteria either equaled or exceeded growth rates for the total prokaryotic community. In addition, SAR11 bacteria were typically responsible for a greater portion of amino acid assimilation (34 to 61%) and glucose assimilation (45 to 57%) than of protein assimilation (< or = 34%). These data suggest that SAR11 bacteria do not utilize various components of the DOM pool equally and may be more important to the flux of low-molecular-weight monomers than to that of high-molecular-weight polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号