首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
植物激素对微管和纤维素微纤丝排向的调节   总被引:7,自引:0,他引:7  
陈金桂  杨军  周燮 《生命科学》2001,13(3):139-141,106
回顾了微管和纤维素微纤丝在细胞骨架构成和延展中的作用;综述了植物激素在微管和纤维素微纤丝排向中的调节功能,并对细胞扩大和伸长的机制进行了探讨。  相似文献   

2.
1963年,先后在动物和高等植物细胞中发现微管结构。已经知道微管不仅具有支持功能,而且在运动、运输和分泌等一系列细胞活动中发挥重要作用。在高等植物细胞中,微管明显地参与形态建成。周质微管(Cortical microtubules)可能与细胞壁中纤维素微纤丝的排列与定向有关。早前期带(Preprophase Bands)预示胞质分裂时细胞板的位置。成膜体微管参  相似文献   

3.
《植物生理学通讯》2011,(5):525-529
摘要:植物细胞壁具有由高分子量的多糖、蛋白质和木质素组成的复杂结构。在细胞壁多糖中,纤维素,一种含有D-1,4氢键的葡聚糖微纤丝,是细胞壁成分中主要的承重部分,也是工业应用的重要前体。纤维素由多聚纤维素合酶(CesA)大型复合物合成,在质膜沿周质微管分布。  相似文献   

4.
《植物生理学通讯》2009,(11):1146-1153
题目:植物细胞壁基质(matrix)多糖的生物合成(综述) 摘要:伸长中的植物细胞的细胞壁主要由纤维素微纤丝和基质多糖(半纤维素和果胶)以及少量结构蛋白和酶蛋白组成。基质多糖在高尔基体中合成,通过胞吐作用输送到细胞壁,并与纤维素微纤丝相嵌。纤维素微纤丝在细胞膜上合成并直接沉积到细胞壁。已知在生长素诱导的伸长细胞中,高尔基体中存在多糖链合成,然而直到最近才鉴定出合成多糖链酶的相关基因。在基因鉴定研究中,  相似文献   

5.
天然纤维素超显微结构的扫描隧道显微镜研究   总被引:6,自引:0,他引:6  
用扫描隧道显微镜(STM)对天然纤维素脱脂棉的超显微结构进行了研究,结果表明用STM可直接观察到脱脂棉的微纤丝和基原纤丝。另外,还直接观察到了脱脂棉中纤维素分子的结晶区和非结晶区以及分叉状结构,从而表明棉花纤维素是一种结晶不完全的多聚物。  相似文献   

6.
天然结晶纤维素的生物合成及其去晶化途径   总被引:2,自引:0,他引:2  
纤维素是高等植物细胞壁的结构骨架和重要组成成分,由细胞质膜上的纤维素合成酶合成.一个纤维素合成酶亚基合成一根纤维素分子链,多个亚基聚集在一起形成末端复合体(TC),可同时合成多根葡聚糖分子糖链,其在氢键和范德华力作用下快速有序堆积,形成结构紧密的天然微纤丝结晶结构.质膜上有序线性排列的超分子TC合成结晶纤维素Ⅰα,而玫瑰花型排列的TC合成结晶纤维素Ⅰβ.结晶微纤丝的密切有效堆积是植物抗降解的天然屏障.高浓度的酸和离子液体可以在微纤丝间有效扩散,破坏晶体分子链的有序堆积、分子间氢键网络,甚至打断晶体内部的糖苷键,完成天然结晶纤维素的去晶化及解聚过程.酶分子的去晶化过程是发生在微纤丝特定表面上的非均相反应过程,可在常温常压下固或液表面上快速完成,但有效可及表面积是其主要限速瓶颈.因此结合物理、化学方法预处理,低成本高效打破限制酶分子有效扩散的屏障,增加酶分子对结晶纤维素特异性结合的效率和有效可及面积,从而实现天然结晶纤维素高效去晶化及绿色快速降解转化.  相似文献   

7.
植物细胞壁中纤维素合成的研究进展   总被引:3,自引:0,他引:3  
纤维素是植物细胞壁的主要成分,是植物细胞壁执行生理功能的基础,也是人类生产和生活中必不可少的一类物质。本文对纤维素合成、合成中所需要的酶以及纤维素沉积中微纤丝的作用等方面进行了综述和探讨, 并对纤维素合成的深入研究进行了展望。  相似文献   

8.
对专性寄生于草鱼肠道的鲩肠袋虫的体表皮层精细构造进行了研究。结果显示其体表皮层由表膜和表膜下纤维系统两部分组成。表膜的组分有细胞质膜,膜泡层(包括外膜、膜泡、内膜),表膜微管层;表膜下纤维系统主要是由毛基体及其附属纤维结构:动纤丝,纤毛后微管,Ⅰ、Ⅱ型横微管和咽微丝组成。这部分结构下连一电子致密的微丝层,将细胞外质与内质分隔开来;且在微丝层的内侧胞质中分布有很多电子透明泡。此外,对表膜微管层、Ⅱ型横微管、外—内质间微丝层及电子透明泡进行了肠袋虫的种间比较并对上述各部分结构的生物功能进行了讨论。  相似文献   

9.
小麦叶片细胞周质微管的研究   总被引:1,自引:0,他引:1  
采用铜网粘附-负染色法,并结合超薄切片,对小麦幼叶和成熟叶片细胞内的周质微管进行了研究,结果如下: (1) 粘附于铜网支持膜上的质膜片段,往往包含一个组织中心的微管体系。微管组织中心具有电子致密度很高的浓密物质。微管从组织中心呈辐射状或扇形分布。微管之间,有单个或数根成束排列, 有的相互平行,有的则相互交叉形成网状结构。微管的外径为24—24.76毫微米,最大长度为12微米。(2) 周质微管与质膜之间有密切联系,两者之间有连丝结构(“桥”)相连接。微管-桥-质膜三者结合形成一个稳定的体系。(3) 不仅质膜能粘附于铜网的福尔马支持膜上,分离原生质体残留的细胞壁纤维素微丝也能粘附于其上。被粘附的网状排列的纤维素微丝与幼叶细胞中周质微管的网状排列相一致,说明周质微管与纤维素微丝排列方向的密切关系。(4) 正在迅速生长的幼叶细胞比成熟叶片具有更多的周质微管和小泡结构(Vesicles),显示这两种细胞器的数量与细胞生长及细胞壁增生加厚的活动强度成正相关。  相似文献   

10.
中间丝     
自60年代后期,陆续发现了直径约8—10nm的细胞质丝。最初由于对这类纤丝的性质不清楚,曾有fila-ments、intermediate filaments、β-filaments、80-100 filaments、100(10nm)filaments诸多命名。至70年代后期才逐渐统一为intermediate filaments(IF)或100A(10nm)filaments。IF的中文名亦很纷繁,如中等纤维、中间纤维、居间纤维、中间丝等。 IF的直径介于肌动蛋白丝与肌球蛋白丝(粗丝)和微管之间,命名冠以“中间”修饰词是恰当的。与微管相对而言,IF、微丝和粗丝同属纤丝filaments范畴。既然microfilaments和thick filaments分别称为微丝和粗丝,那么IF则理应称为中间丝。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号