首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
群体遗传结构上的差异是遗传多样性的一种重要体现,对群体遗传结构的研究已有较久的历史,而其中的基因流研究近些年来越来越受到重视。它对群体遗传学、进化生物学、保护生物学、生态学有着极其重要的作用。虽然传统的群体遗传学能估测基因流大小,但它的精确性还有很大局限性。随着生物技术的进步,对基因流的研究逐渐向分子水平过渡,应用蛋白质电泳技术、分子标记技术(RAPD、RFLP、VNTR、ISSR、DNA测序等)方法对群体间基因流的流动水平进行了深入细致的研究。本文综述了群体遗传结构的几种模式:陆岛模式、海岛模式、阶石模式、距离隔离模式、层次模式,以及在群体遗传结构的几种模式基础上的基因流的研究方法、作用、地位和近些年来研究者的研究成果,并指出了这些方法的局限性。Abstract: The difference of population genetic structure is one of the important embodiments of genetic diversity. There is a long history of the study of population genetic structure, and the study of gene flow of population genetic structure is aroused more and more importance. It has an important effect on population genetics, evolution biology, conservation biology and ecology. Although the level of gene flow is estimated by traditional population genetics, there is a large restriction in its precision. With the development of biological technology, the methods of the research on gene flow reach the molecular level. Methods of protein electrophoresis and molecular markers (RAPD, RFLP, VNTR, ISSR and mitochondrial DNA) are used to research gene flow among populations. This paper introduces not only some models of population genetic structure: Continent-Island Model, Island Model, Stepping-Stone Model, Isolation-By-Distance Model and Hierarchical Model; but also the study methods, function and role of gene flow is based on models of population genetic structure, research achievements in recent years and the restriction of the methods.  相似文献   

2.
植物分子群体遗传学研究动态   总被引:3,自引:0,他引:3  
王云生  黄宏文  王瑛 《遗传》2007,29(10):1191-1191―1198
分子群体遗传学是当代进化生物学研究的支柱学科, 也是遗传育种和关于遗传关联作图和连锁分析的基础理论学科。分子群体遗传学是在经典群体遗传的基础上发展起来的, 它利用大分子主要是DNA序列的变异式样来研究群体的遗传结构及引起群体遗传变化的因素与群体遗传结构的关系, 从而使得遗传学家能够从数量上精确地推知群体的进化演变, 不仅克服了经典的群体遗传学通常只能研究群体遗传结构短期变化的局限性, 而且可检验以往关于长期进化或遗传系统稳定性推论的可靠程度。同时, 对群体中分子序列变异式样的研究也使人们开始重新审视达尔文的以“自然选择”为核心的进化学说。到目前为止, 分子群体遗传学已经取得长足的发展, 阐明了许多重要的科学问题, 如一些重要农作物的DNA多态性式样、连锁不平衡水平及其影响因素、种群的变迁历史、基因进化的遗传学动力等, 更为重要的是, 在分子群体遗传学基础上建立起来的新兴的学科如分子系统地理学等也得到了迅速的发展。文中综述了植物分子群体遗传研究的内容及最新成果。  相似文献   

3.
《遗传》1987,(5)
苏联最近出版了遗传学家杜比宁1985年所写的《遗传学》一书。 作者认为遗传学是研究生物体遗传与变异的一门科学。由于生物体具有繁殖的特性,所以它的繁殖、进化和选育过程均与此有关。遗传现象是在分子、亚细胞、细胞、个体、群体以及种的水平上表现出来的。因此从根本上讲,进化与选择过程是有联系的,都可以在分子、亚细胞、个体、群体以及各种特异水平上发生各  相似文献   

4.
植物保护遗传学研究进展   总被引:50,自引:5,他引:45  
李昂  葛颂 《生物多样性》2002,10(1):61-71
保护遗传学是过用遗传学的原理和研究手段,以生物多样性尤其是遗传多样性的研究和保护为核心的一门新兴学科,近几十年来,遗传学研究在生物多样性保护的理论和实践中发挥着越来越重要的作用。本文简要回顾了保护遗传学的发展历史,研究方向和涉及的概念,着重介绍了植物保护遗传学研究所取得的一些进展,包括植物系统发育重建和保护单元的确定,遗传多样性与物种和群体适应性之间的关系,群体遗传结构与保护策略的制定以及植物遗传资源的鉴定和利用等方面的内容,并强调保护遗传学研究是未来生物多样性和保护生物学研究中一个亟待加强的研究领域。  相似文献   

5.
保护遗传学研究的是影响物种灭绝的遗传因素以及濒危物种的遗传管理, 以降低物种的灭绝风险。本文从遗传多样性本身及其对生态系统的影响两个方面介绍了植物保护遗传学的最新进展。根据遗传标记的功能, 保护遗传学研究可分为选择中性遗传变异研究和适应性遗传变异两个方面。对于目前主要采用的选择中性遗传标记研究, 本文着重介绍了以下方面的最新进展: (1)利用遗传标记进行个体、物种或遗传单元的鉴定, 从而有效地设计保护策略, 避免在迁地保护中混淆物种, 提高保护效率; (2)应重视由于物种自身生殖、扩散等原因造成的隐性瓶颈效应。由于选择中性遗传标记并不能准确反映物种的适应性遗传基础, 从适应性遗传变异角度研究濒危物种的进化潜力已成为保护遗传学的研究前沿。大部分相关研究还集中在利用基因组扫描检测受选择的位点, 而对功能基因的适应性研究还比较少。景观遗传学旨在解释景观和生境影响下的种群间基因流和遗传多样性格局, 这方面研究将会促进我们更多了解种群基因流的地理限制因子和不同景观基质下的种群遗传差异。遗传多样性作为物种的一种属性亦可在一定程度上反馈, 并影响生态系统。这提示我们不仅仅是濒危物种, 常见物种的遗传多样性及其保护亦很重要。最后, 我们从4个方面对保护遗传学研究进行了展望, 包括应加强将生态系统各环节联系起来研究遗传多样性, 在技术手段上利用多态性更丰富的分子标记, 同时强调了对常见物种保护遗传学研究的重要性, 并初步分析了我国保护遗传学研究与国际水平的差距, 建议加强种群遗传学和进化生物学基础理论的学习。  相似文献   

6.
周海 《植物杂志》2009,(12):103-105
生物学研究涵盖了几十亿年的生命演化,涉及几百万种生命的形态,结构,生理,遗传,变异等方面的问题;微观领域深入到细胞,分子水平,宏观层次深入到生物个体和群体发展规律;生物学的研究和学习必需以一定的物理,化学等自然科学发展为基础,形成了包括形态,  相似文献   

7.
周海 《生命世界》2009,(12):103-105
生物学研究涵盖了几十亿年的生命演化,涉及几百万种生命的形态,结构,生理,遗传,变异等方面的问题;微观领域深入到细胞,分子水平,宏观层次深入到生物个体和群体发展规律;生物学的研究和学习必需以一定的物理,化学等自然科学发展为基础,形成了包括形态,  相似文献   

8.
柳树遗传学研究现状与前景   总被引:5,自引:0,他引:5  
柳树种类繁多,分布广泛,是重要的阔叶树种,其遗传学研究也较早受到重视。该文从柳树性状遗传变异、群体遗传、遗传鉴定、遗传图谱构建和QTL定位几个角度介绍了柳树遗传学的研究进展,并结合木本植物的特点和柳树的生物学特性进行分析,认为柳树是理想的林木遗传学研究材料,可作为模式树种,应受到特别关注。  相似文献   

9.
自然植物种群的亲本分析及其在生态学研究中的应用   总被引:10,自引:0,他引:10  
自然植物种群的结构、交配行为、基因流以及个体和基因型的适合度是种群生物学的重要内容,而种群谱系的建立是综合研究以上内容的重要方法。种群谱系的构建最初是在人类中进行研究的,其统计/遗传学方法在1950年前就已有详尽的研究[1],近些年来用于亲子鉴定也已...  相似文献   

10.
王源秀    徐立安  黄敏仁 《植物学报》2008,25(2):240-247
柳树种类繁多, 分布广泛, 是重要的阔叶树种, 其遗传学研究也较早受到重视。该文从柳树性状遗传变异、群体遗传、遗传鉴定、遗传图谱构建和QTL定位几个角度介绍了柳树遗传学的研究进展, 并结合木本植物的特点和柳树的生物学特性进行分析, 认为柳树是理想的林木遗传学研究材料, 可作为模式树种, 应受到特别关注。  相似文献   

11.
景观遗传学原理及其在生境片断化遗传效应研究中的应用   总被引:1,自引:0,他引:1  
沈泽昊  吉成均 《生态学报》2010,30(18):5066-5076
景观遗传学是近年来在景观生态学和种群遗传学之间形成的一个交叉领域,强调景观的组成、空间构型和环境梯度对基因流、种群遗传空间结构和局域种群适应的影响。景观遗传学尚未成为一门独立的学科,其理论基础主要来自分子遗传学、种群生物学和景观生态学。现代分子遗传标记技术、遥感和GIS支持下的景观分析和空间统计方法的综合运用是景观遗传学主要研究途径。系统介绍了景观遗传学的基础概念,关键科学问题,基本理论框架,及其与相邻研究领域的关系,综述了景观遗传学最为关注的现实课题——景观碎裂化的种群遗传效应的研究进展,主要涉及生境片断化的遗传效应、不同属性的物种响应、以及生境片断化过程的选择作用等方面。通过采取一种跨尺度的视角,景观遗传学研究显著深化了关于景观碎裂化对生物多样性影响的理解。  相似文献   

12.
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene‐flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population‐genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene‐flow patterns. In the last decades, network theory – a branch of discrete mathematics concerned with complex interactions between discrete elements – has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population‐genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology.  相似文献   

13.
The curriculum for genetics courses is shifting from a classical to a more molecular genetics focus, increasing the importance of subjects such as population genetics. Population genetics is a computational and statistical field that requires a good understanding of the nature of stochastic events. It is a difficult field for biology students with a limited mathematical background and there is a need for visualisation tools to facilitate understanding by the use of practical examples. WinPop provides students and researchers with a visual tool to allow the simulation and representation of population genetics phenomena. WinPop is a user-friendly software meant for use in population genetics courses and basic research. WinPop 2.5 contains six different modules that represent and simulate population genetics models. Genotype and allele frequencies are calculated under the different models: panmixia, genetic drift, assortative matings, selection, gene flow and mutation. The program's interface presents information in Cartesian graphics and isosceles triangular coordinate systems, allowing the user to save graphical and textual data output from the simulations. WinPop is developed in Visual Basic 6.0 and uses Windows 95 and higher. WinPop 2.5 can be downloaded from http://www.genedrift.org/winpop.php.  相似文献   

14.
Estimation of effective population sizes (N(e)) and temporal gene flow (N(e)m, m) has many implications for understanding population structure in evolutionary and conservation biology. However, comparative studies that gauge the relative performance of N(e), N(e)m or m methods are few. Using temporal genetic data from two salmonid fish population systems with disparate population structure, we (i) evaluated the congruence in estimates and precision of long- and short-term N(e), N(e)m and m from six methods; (ii) explored the effects of metapopulation structure on N(e) estimation in one system with spatiotemporally linked subpopulations, using three approaches; and (iii) determined to what degree interpopulation gene flow was asymmetric over time. We found that long-term N(e) estimates exceeded short-term N(e) within populations by 2-10 times; the two were correlated in the system with temporally stable structure (Atlantic salmon, Salmo salar) but not in the highly dynamic system (brown trout, Salmo trutta). Four temporal methods yielded short-term N(e) estimates within populations that were strongly correlated, and these were higher but more variable within salmon populations than within trout populations. In trout populations, however, these short-term N(e) estimates were always lower when assuming gene flow than when assuming no gene flow. Linkage disequilibrium data generally yielded short-term N(e) estimates of the same magnitude as temporal methods in both systems, but the two were uncorrelated. Correlations between long- and short-term geneflow estimates were inconsistent between methods, and their relative size varied up to eightfold within systems. While asymmetries in gene flow were common in both systems (58-63% of population-pair comparisons), they were only temporally stable in direction within certain salmon population pairs, suggesting that gene flow between particular populations is often intermittent and/or variable. Exploratory metapopulation N(e) analyses in trout demonstrated both the importance of spatial scale in estimating N(e) and the role of gene flow in maintaining genetic variability within subpopulations. Collectively, our results illustrate the utility of comparatively applying N(e), N(e)m and m to (i) tease apart processes implicated in population structure, (ii) assess the degree of continuity in patterns of connectivity between population pairs and (iii) gauge the relative performance of different approaches, such as the influence of population subdivision and gene flow on N(e) estimation. They further reiterate the importance of temporal sampling replication in population genetics, the value of interpreting N(e)or m in light of species biology, and the need to address long-standing assumptions of current N(e), N(e)m or m models more explicitly in future research.  相似文献   

15.
《Fungal Biology Reviews》2018,32(4):249-264
Fungal model species have contributed to many aspects of modern biology, from biochemistry and cell biology to molecular genetics. Nevertheless, only a few genes associated with morphological development in fungi have been functionally characterized in terms of their genetic or molecular interactions. Evolutionary developmental biology in fungi faces challenges from a lack of fossil records and unresolved species phylogeny, to homoplasy associated with simple morphology. Traditionally, reductive approaches use genetic screens to reveal phenotypes from a large number of mutants; the efficiency of these approaches relies on profound prior knowledge of the genetics and biology of the designated development trait—knowledge which is often not available for even well-studied fungal model species. Reductive approaches become less efficient for the study of developmental traits that are regulated quantitatively by more than one gene via networks. Recent advances in genome-wide analysis performed in representative multicellular fungal models and non-models have greatly improved upon the traditional reductive approaches in fungal evo-devo research by providing clues for focused knockout strategies. In particular, genome-wide gene expression data across developmental processes of interest in multiple species can expedite the advancement of integrative synthetic and systems biology strategies to reveal regulatory networks underlying fungal development.  相似文献   

16.
景观遗传学:概念与方法   总被引:2,自引:0,他引:2  
薛亚东  李丽 《生态学报》2011,31(6):1756-1762
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战,生物多样性保护必须由单纯的物种保护上升到栖息地景观的保护。景观遗传学是定量确定栖息地景观特征对种群遗传结构影响的一门交叉学科,在生物保护及自然保护区管理方面有巨大的潜力。从生物多样性保护的角度评述了景观结构与遗传多样性的关系,介绍了景观遗传学的基本概念,研究尺度和方法,并对景观遗传学当前的研究焦点及面临的挑战做了总结。  相似文献   

17.
Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic structure. We used classical Wright-Fisher models and spatially explicit, individual-based, landscape genetic models to simulate gene flow via dispersal and mating in a series of landscapes representing two patches of habitat separated by a barrier. We developed a mathematical formula that predicts the relationship between barrier strength (i.e., permeability) and the migration rate (m) across the barrier, thereby linking spatially explicit landscape genetics to classical population genetics theory. We then assessed the reliability of the function by obtaining population genetics parameters (m, F(ST) ) using simulations for both spatially explicit and Wright-Fisher simulation models for a range of gene flow rates. Next, we show that relaxing some of the assumptions of the Wright-Fisher model can substantially change population substructure (i.e., F(ST) ). For example, isolation by distance among individuals on each side of a barrier maintains an F(ST) of ~0.20 regardless of migration rate across the barrier, whereas panmixia on each side of the barrier results in an F(ST) that changes with m as predicted by classical population genetics theory. We suggest that individual-based, spatially explicit modelling provides a general framework to investigate how interactions between movement and landscape resistance drive population genetic patterns and connectivity across complex landscapes.  相似文献   

18.
Liu L  Zhang ML  Huang Y 《遗传》2011,33(5):485-493
近年来,转座子介导的插入突变在哺乳动物的分子遗传学研究中得到了广泛的应用。转座子作为一种简便高效的遗传学操作工具,在构建转基因动物模型、基因治疗、细胞水平和动物整体水平的基因功能研究等方面发挥了重要的作用。文章重点介绍DNA转座子的结构、功能及其应用于小鼠分子遗传学领域的最新研究进展。  相似文献   

19.
Both population genetics and systematics are core disciplines of evolutionary biology. While systematics deals with genealogical relationships among taxa, population genetics has mainly been based on allele frequencies and the distribution of genetic variants whose genealogical relations could for a long time, due mainly to methodological constraints, not be inferred. The advent of mitochondrial DNA analyses and modern sequencing techniques in the 1970s revolutionized evolutionary genetic studies and gave rise to molecular phylogenetics. In the wake of this new development systematic approaches and principles were incorporated into intraspecific studies at the population level, e.g. the concept of monophyly which is used to delineate evolutionarily significant units in conservation biology. A new discipline combining phylogenetic analyses of genetic lineages with their geographic distribution ('phylogeography') was introduced as an explicit synthesis of population genetics and systematics. On the other hand, it has increasingly become obvious that discordances between gene trees and species trees not only result from spurious data sets or methodological flaws in phylogenetic analyses, but that they often reflect real population genetic processes such as lineage sorting or hybridization. These processes have to be taken into account when evaluating the reliability of gene trees to avoid wrong phylogenetic conclusions. The present review focuses on the phenomenon of non-phylogenetic sorting of ancestral polymorphisms, its probability and its consequences for molecular systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号