首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   6篇
  2019年   4篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   21篇
  2008年   7篇
  2007年   11篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
Na+/H+ exchanger regulatory factor (NHERF) proteins are a family of PSD-95/Discs-large/ZO-1 (PDZ)-scaffolding proteins, three of which (NHERFs 1-3) are localized to the brush border in kidney and intestinal epithelial cells. All NHERF proteins are involved in anchoring membrane proteins that contain PDZ recognition motifs to form multiprotein signaling complexes. In contrast to their predicted immobility, NHERF1, NHERF2, and NHERF3 were all shown by fluorescence recovery after photobleaching/confocal microscopy to be surprisingly mobile in the microvilli of the renal proximal tubule OK cell line. Their diffusion coefficients, although different among the three, were all of the same magnitude as that of the transmembrane proteins, suggesting they are all anchored in the microvilli but to different extents. NHERF3 moves faster than NHERF1, and NHERF2 moves the slowest. Several chimeras and mutants of NHERF1 and NHERF2 were made to determine which part of NHERF2 confers the slower mobility rate. Surprisingly, the slower mobility rate of NHERF2 was determined by a unique C-terminal domain, which includes a nonconserved region along with the ezrin, radixin, moesin (ERM) binding domain. Also, this C-terminal domain of NHERF2 determined its greater detergent insolubility and was necessary for the formation of larger multiprotein NHERF2 complexes. In addition, this NHERF2 domain was functionally significant in NHE3 regulation, being necessary for stimulation by lysophosphatidic acid of activity and increased mobility of NHE3, as well as necessary for inhibition of NHE3 activity by calcium ionophore 4-Br-A23187. Thus, multiple functions of NHERF2 require involvement of an additional domain in this protein.  相似文献   
2.
We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.  相似文献   
3.
Conservation genetics is a well‐established scientific field. However, limited information transfer between science and practice continues to hamper successful implementation of scientific knowledge in conservation practice and management. To mitigate this challenge, we have established a conservation genetics community, which entails an international exchange‐and‐skills platform related to genetic methods and approaches in conservation management. First, it allows for scientific exchange between researchers during annual conferences. Second, personal contact between conservation professionals and scientists is fostered by organising workshops and by popularising knowledge on conservation genetics methods and approaches in professional journals in national languages. Third, basic information on conservation genetics has been made accessible by publishing an easy‐to‐read handbook on conservation genetics for practitioners. Fourth, joint projects enabled practitioners and scientists to work closely together from the start of a project in order to establish a tight link between applied questions and scientific background. Fifth, standardised workflows simplifying the implementation of genetic tools in conservation management have been developed. By establishing common language and trust between scientists and practitioners, all these measures help conservation genetics to play a more prominent role in future conservation planning and management.  相似文献   
4.
5.
6.
7.
8.
Rising temperatures and agricultural changes (intensification and succession on fallow land) during the last few decades have caused a strong decline of moist and cool sites on nutrient-poor grasslands and species depending on these habitats. We tested the effects of habitat deterioration on a local and regional scale in such a species, the highly endangered butterfly Lycaena helle , which was more widely distributed over central Europe during the postglacial period, but has recently become restricted to some remnants. We analysed five polymorphic microsatellite loci in 220 individuals sampled at ten different localities. The study sites in Germany, Luxembourg and Belgium are geographically split into three mountain regions: the Ardennes, the Eifel and the Westerwald; the latter is separated from the other two by the river Rhine. A comparatively high genetic diversity was detected in all local populations and genetic differentiation was found among the Ardennes, the Eifel and the Westerwald (FCT: 0.084). The genetic differentiation among all populations (FST: 0.137) underlines natural and anthropogenic habitat fragmentation. While ongoing gene flow seems to exist among the Eifel populations indicating the only intact metapopulation, a high genetic differentiation in the Ardennes and the Westerwald indicates a disruption of population connectivity. Our genetic data obtained on different spatial scales show the genetic consequence of long-term isolation and should trigger necessary conservation measures at the metapopulation level.  相似文献   
9.
The lysosomal membrane protein type 2 is a novel identified lysosomal sorting receptor for β-glucocerebrosidase (GC). Mutations in both genes underlie human pathologies causing action myoclonus-renal failure syndrome (AMRF) and Gaucher disease (GD), respectively. We now demonstrate that the lumenal acidification mediated by the vacuolar (H(+) )-ATPase triggers the dissociation of LIMP-2 and GC in late endosomal/lysosomal compartments. Moreover, we identified a single histidine residue in LIMP-2 that is necessary for LIMP-2 and GC binding. This residue is in close proximity to a proposed coiled-coil domain, which determines the binding to GC and may function as a critical pH sensor.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号