首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
美国纽约州华斯曼研究所的科学家通过基因工程,已将外源遗传物质导入植物的叶绿体,并使这种外源DNA稳定地整合于其后代的叶绿体。上述研究是基因工程上的突破。它可使科学家有可能操纵涉及光合作用的基因,阐明光合作用的某些最基本的过程,从而进一步改造植物和改良农作物品种。这些科学家以烟草N.tabacum SPC2为试材。这种烟草的质粒pZS148(9.6千碱基)含有可编码壮观霉素抗性突变的DNA片段。用这种DNA包衣的钨粒子轰击烟草植株的叶组织。然后通过叶组织培养的壮观霉素抗性  相似文献   

2.
康奈尔大学的研究人员已成功地将一个外源基因扦入到一种兰绿藻-Anacystis nidulans,并加以表达,从而可利用该藻作为研究包括光合作用基因表达的模型系统。遗传工程师们试想提高植物光合作用的能效的同时,将高等植物核和叶绿体DNA的功能分开的企图遭到了失败。康奈尔B.Thompson研究所(Ithaca,NY)植物分子遗传实验室主任A.Szalay解释研究关于叶绿体光合作用和膜装配的分子遗传学是极其困难的。  相似文献   

3.
Nature Biotechnology 2000年18卷3期249页报道:日本九州大学的科学家们已培育成功一种可在高温下维持光合作用的转基因烟草(Science287,476~479,2000)。鉴于沙漠植物的叶绿体可在高温下减少三烯脂肪酸的合成,科学家们培育了含有来自拟南芥(Arabidopsis thaliana)的附加的叶绿体特异△-3去饱和酶(脱氢酶)基因的两个转基因烟草株系。互阻遏作用导致△-3去饱和酶基因在这些植株中的表达下降,以及与此伴随的三烯脂肪酸的相应减少。因此,这种转基因植株40℃高温下的光合作用活性可高于25℃下的活性(但40℃可极大地降低野生型植株的光合作用强度)。科学家们提示,利用内源基因可避免利-46用外源DNA进行基因操作时发生的有害效应。这个研究组的植物生理学家KohIba说:“此项研究给予我们的启迪是,利用基因操作技术可育成新的农作物或树木,以适应无可避免的全球性气候变化。例如可使寒冷地区的树木适应于高温环境”。汪开治  相似文献   

4.
日本的研究者遗传改造了脂肪酸的构型,使叶绿体膜发生改变,从而提高了植物对寒冷的抗性。Kirin Brewery Co.(Tochigi,Japan)参加了此项研究,希望有一天某些作物能经受冰冻。植物对寒冷的抗性,科学家称之为“冷敏感性”,与叶绿体膜的脂肪酸类型密切相关。叶绿体是植物赖以光合作用的绿色结构。当含有高浓度顺式不饱和脂肪酸时,如菠菜,植物就抗冷。而含有少量叶绿体顺式不饱和脂肪酸的南瓜藤,就很容易低温损伤。这些关键脂肪酸与磷脂酰甘油有关。后者在叶绿体膜上进行的光合作用中起作用。  相似文献   

5.
叶绿体虽然是植物细胞内一种极其重要的细胞器,但其分裂的分子机制尚不很清楚。已经证明FtsZ蛋白作为真核细胞分裂装置的一个关键成分,参与叶绿体的分裂过程。烟草的FtsZ基因属于2个不同的家族,在对NtFtsZ1家族成员研究的基础上,用正义和反义表达技术研究了NtFtsZ2家族成员NtFtsZ2-1基因在转基因烟草中的功能。显微分析结果表明NtFtsZ2-1基因的表达水平异常增强或减弱都会严重干扰叶绿体的正常分裂过程,导致叶绿体在形态和数目上的异常(体积明显增大,数目显著减少),而单个叶肉细胞中叶绿体的总表面积在正反义转基因烟草和野生型烟草之间保持了相对稳定,没有发生明显的变化。同时还证明NtFtsZ2-1基因表达的变化对叶绿素含量和叶绿体的光合作用能力没有直接的影响。据此我们认为NtFtsZ2-1基因参与叶绿体的分裂和体积的扩大,其表达水平的波动会改变植物中叶绿体的数目和大小,而且在叶绿体的数目与体积之间可能存在一种补偿机制,保证叶绿体能最大限度地吸收光能,从而使光合作用得以正常进行。  相似文献   

6.
植物生物工程学家迫切希望对控制光合作用的基因和植物叶绿体中的其它基因进行操作。但目前在不将叶绿体致死的情况下,调整光合作用是困难的,并且将DNA嵌入高等植物的叶绿体中,也同样困难。然而这些问题很快将会得到解决。Lee MacIntosh和他的同事在美国密执安州大学(东兰辛)根据蓝绿藻的一个株系,研制出了一种模式系统。该系统能  相似文献   

7.
植物叶绿体DNA是存在核基因外的细胞质基因组,它是一种双链DNA分子、在细胞内,与核基因协调编码与光合作用有关的蛋白质,叶绿体基因组中基因的结构与表达调控与原核生物相似,但也有一些区别,深入开展叶绿体基因组的基因,对探讨光合作用机理与细胞器的起源等问题具有重要意义。  相似文献   

8.
植物叶绿体类囊体膜及膜蛋白研究进展   总被引:5,自引:0,他引:5  
叶绿体是植物和真核藻类进行光合作用的场所。存在于叶绿体类囊体膜上的蛋白质复合物含有光反应所需的光合色素和电子传递链组分,在光合作用过程中,光化学反应发生在类囊体膜上。因此,类囊体膜是光能向化学能转化的主要场所,因而也一直是光合作用研究的热点。叶绿体类囊体膜的深入研究可以促进光合作用的分子机理研究。该文就叶绿体类囊体膜的三维构象及类囊体膜蛋白的组成和功能研究进行了综述。  相似文献   

9.
高等植物的叶绿体转化系统及研究进展   总被引:2,自引:0,他引:2  
在高等植物的细胞中 ,细胞核、叶绿体和线粒体都含有DNA ,它们构成了既相对独立又相互联系的遗传系统。以细胞核为外源基因受体的植物基因工程已被广泛地应用于重要农作物的改良。但核基因转化仍存在一系列难以解决的问题 ,如细胞核基因组大、背景复杂 ;外源基因的表达效率低 ,后代不稳定 ;环境安全难以保证等。为克服核基因转化存在的不足 ,1 988年 ,Boynton等[1] 以衣藻为材料用基因枪进行外源基因对叶绿体的转化 ,首次证实了叶绿体转化的可行性。这项工作使人们意识到植物的叶绿体不仅是光合作用的重要场所 ,也可以作为植物基…  相似文献   

10.
叶绿体是植物细胞和真核藻类执行光合作用的重要细胞器,在叶绿体中表达外源基因比在细胞核中表达具有一些独特优势。叶绿体基因工程涉及叶绿体的基因组特征、转化系统的优点、转化过程及方法等方面,叶绿体基因工程在提高植物光合效率、改良植物特性、生产生物药物及改善植物代谢途径等方面已得到应用。尽管叶绿体基因工程还存在同质化难度高、标记基因转化效率较低、宿主种类偏少等问题,但作为外源基因在高等植物中表达的良好平台其仍然具有广阔的发展和应用前景。  相似文献   

11.
日本《朝日新闻》2 0 0 4年4月5日报道:日本奈良尖端科学技术学院的研究小组成功利用转基因技术提高植物光合作用能力,使其生长周期大幅缩短。研究人员把高活性蓝藻的光合作用相关基因导入烟草中,它会进入叶绿体内的DNA ,而不会进入细胞核内的DNA ,可避免转基因通过花粉而扩散。植物细胞内的叶绿体DNA与细胞核的DNA不同,它与光合作有关。研究人员发现了两种对光合作用很重要的酶基因,于是试验将烟草的这类基因换成了蓝藻的基因。其结果是烟草的光合作用速度比原来增长70 % ,15周后比普通植物高4 0 % ,其从光合作用中得到的淀粉也比原来…  相似文献   

12.
众所周知,生物的性状是由其遗传物质DNA决定的。在高等植物细胞中,除细胞核外,叶绿体和线粒体中也都有各自的DNA。叶绿体是光能转换,光合作用的场所。线粒体是氧化磷酸化的场所。线粒体和叶绿体的DNA,都具有细胞内半自主独立的自我复制能力,在遗传上表现为特有的母性遗传。在植物细胞中,叶绿体和线粒体具有许多与细菌共同的特性。这就给人们一个启示:那些有用的来自原核生物的目的基因能否以具有原核性的叶绿体和线粒体DNA做为它们的遗传受体,用以进行光合作用的遗传工程,生物固氮及其它遗传转化的研究。  相似文献   

13.
叶绿体是植物细胞内执行光合作用的半自主性细胞器,叶绿体转基因是研究叶绿体基因表达调控机制的重要技术。通常在细胞和组织水平进行转化时需要叶绿体同质化,因此实验周期较长。该文以无菌培养的黄瓜绿色子叶为材料,通过差速离心分离叶绿体,以0.33 mol/L山梨醇为叶绿体洗涤和悬液,在13 k V/cm电击电压条件下进行转化。经PCR、RT-PCR鉴定和荧光显微镜观察,证明外源基因能导入离体叶绿体并可进行表达。该方法有望为包括鉴定叶绿体表达载体功能等基础性研究工作提供快捷途径。  相似文献   

14.
自从1962年发现叶绿体 DNA(ctDNA),以及后来证明叶绿体分裂和叶绿体基因组自主复制以来,20余年间对叶绿体的研究有了长足的进步,成为植物分子生物学的“生长点”之一。这些研究成果对于揭示光合作用过程、叶绿体基因的作用及其调控具有重要意义。迄今为止已有几十种蛋白质及核酸分子被证明是由叶绿体基因指导下合成的,其中有些基因已经定位,  相似文献   

15.
叶绿素是植物光合作用的重要色素,叶绿素的合成决定植物的光合效率,并且直接影响作物的产量和品质。叶绿素的合成及分解代谢是一个非常复杂的过程,在此过程中有较多的基因参与,其中任何一个基因发生突变都有可能影响叶绿素的合成及分解,从而使叶片表现出各种叶色变化或者会影响植物的生长。叶色突变体研究是探明叶绿体发育过程中基因功能的有效途径。因此,发掘和鉴定叶色突变基因,开展与叶绿素相关基因的定位、克隆及功能研究均具有重要的理论意义和应用价值。综述了水稻黄绿叶突变体的研究进展,旨在为研究水稻叶绿素生物合成途径和光合作用机制提供理想的材料,同时还可作为标记性状在杂种优势中进行利用。  相似文献   

16.
运用免疫金标记电镜技术研究了禾本科C3植物大麦(Hordeum vulgare L.)和C4植物玉米(Zea mays L.)叶片中Rubisoo及其活化酶(RCA)的细胞定位,结果表明:两种植物叶片解剖结构及叶绿体超微结构差别明显.在大麦叶细胞中,只有一种叶肉细胞叶绿体,Rubisoo和RCA主要分布于叶绿体的间质中.在玉米叶细胞中,存在着维管束鞘细胞和叶肉细胞两种类型叶绿体,Rubisco主要分布于鞘细胞叶绿体的基质中,但在叶肉细胞叶绿体中亦有少量特异性标记;RCA在鞘细胞叶绿体和叶肉细胞叶绿体的基质中都有分布.两种植物叶绿体结构及光合作用关键酶定位的不同,体现了C3植物和C4植物在光合器结构与功能上的差异.  相似文献   

17.
ISAAA信息     
<正>光合作用"开关"使水稻产量提高30%阿肯色州立大学的科学家发现了一种蛋白质,作用类似"开关",能够激活增强水稻光合作用活性的基因,使水稻产量提高30%。研究人员将这种蛋白质名为高产水稻蛋白(HYR),能使植物应对胁迫、生长旺盛并产量增加。HYR调节子调节光合作用这一个复杂过程。在温室中,利用HYR调节子的植物比其他品  相似文献   

18.
高等植物叶绿体定位的铁氧还蛋白-NADP+氧化还原酶(LFNR)负责催化光合线性电子传递的最后一步反应,催化电子由还原态的铁氧还蛋白(Fd)传递给NADP+。LFNR分布在叶绿体的3个不同的组分中,即叶绿体基质中、类囊体膜上和叶绿体内膜上。最近的研究表明,大多数膜定位的LFNR并非光合作用所必需的,叶绿体基质中的LFNR足以维持光合作用的正常进行。叶绿体中的两个蛋白——Tic62和TROL作为LFNR的锚定蛋白,可以与LFNR在类囊体膜上形成高分子量的蛋白复合体。Tic62-LFNR复合体主要负责在夜间保护LFNR的活性,但它不直接在光合作用中起作用。然而,TROL-LFNR复合体对植物的光合作用有一定的影响。本文将概述植物LFNR的最新研究进展。  相似文献   

19.
ISAAA信息     
<正>光合作用"开关"使水稻产量提高30%阿肯色州立大学的科学家发现了一种蛋白质,作用类似"开关",能够激活增强水稻光合作用活性的基因,使水稻产量提高30%。研究人员将这种蛋白质名为高产水稻蛋白(HYR),能使植物应对胁迫、生长旺盛并产量增加。HYR调节子调节光合作用这一个复杂过程。在温室中,利用HYR调节子的植物比其他品  相似文献   

20.
叶绿体基因编码蛋白质在水稻叶片生长过程中的表达研究   总被引:3,自引:0,他引:3  
叶绿体是绿色植物把光能转化为化学能的重要细胞器.目前,多种植物的叶绿体基因组序列已经获得,对叶绿体内发生的各种生物学过程人们也已经有相当深入的了解,但对叶绿体基因编码蛋白质的表达还所知甚少.用蛋白质印迹实验系统地检测了15个叶绿体基因编码蛋白质在水稻叶片不同生长时期的表达.其中7个与光合作用相关蛋白质的表达具有相似的模式,其表达量随叶片生长而增加,一般在孕穗期、开花期达到最高峰,在成熟期叶片下降,这种模式与水稻生长对光合作用的需求有明显相关性.4个与DNA复制相关的RNA聚合酶在苗期叶片中表达量达到最高,说明这些聚合酶在较早时期发挥作用.4个NADH脱氢酶蛋白质的表达呈2种不同的模式,其中亚基2和4在种子萌发后的早期叶片中就达到最高峰,亚基5和7的最高峰出现在中后期,反映了它们之间功能上的不同.实验结果直观且相对定量地揭示了叶绿体编码蛋白质的表达与叶片生长之间的关联关系,为深入了解其功能提供了重要的线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号