首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.

Key message

Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency.

Abstract

Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutEGY) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutEGY. A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.
  相似文献   

2.
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. 相似文献   

3.
Size and shape of soybean seeds are closely related to seed yield and market value. Annual wild soybeans have the potential to improve cultivated soybeans, but their inferior seed characteristics should be excluded. To detect quantitative trait loci (QTLs)/segments of seed size and shape traits in annual wild soybean, its chromosome segment substitution lines (CSSLs) derived from NN1138-2 (recurrent parent, Glycine max) and N24852 (donor parent, Glycine soja) and then modified 2 iterations (coded SojaCSSLP3) were improved further to contain more lines (diagonal segments) and less heterozygous and missing portions. The new population (SojaCSSLP4) composed of 195 CSSLs was evaluated under four environments, and 11, 13, 7, 15 and 14 QTLs/segments were detected for seed length (SL), seed width (SW), seed roundness (SR), seed perimeter (SP) and seed cross section area (SA), respectively, with all 60 wild allele effects negative. Among them, 16 QTLs/segments were shared by 2–5 traits, respectively, but 0–3 segments for each of the 5 traits were independent. The non-shared Satt274 and shared Satt305, Satt540 and Satt239 were major segments, along with other segments composed of two different but related sets of genetic systems for SR and the other 4 traits, respectively. Compared with the literature, 7 SL, 5 SW and 2 SR QTLs/segments were also detected in cultivated soybeans; allele distinction took place between cultivated and wild soybeans, and also among cultivated parents. The present mapping is understood as macro-segment mapping, the segments may be further dissected into smaller segments as well as corresponding QTLs/genes.  相似文献   

4.

Key message

QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding.

Abstract

Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
  相似文献   

5.
Both heading date and plant height are important traits related to grain yield in rice. In this study, a recombinant inbred lines (RILs) population was used to map quantitative trait loci (QTLs) for both traits under 3 long-day (LD) environments and 1 short-day (SD) environment. A total of eight QTLs for heading date and three QTLs for plant height were detected by composite interval mapping under LD conditions. Additional one QTL for heading date and three QTLs for plant height were identified by Two-QTL model under LD conditions. Among them, major QTLs qHd7.1, qHd7.2 and qHd8 for heading date, and qPh1 and qPh7.1 for plant height were commonly detected. qHd7.1 and qHd7.2 were mapped to small regions of less than 1 cM. Genome position comparison of previously cloned genes with QTLs detected in this study revealed that qHd5 and qPh3.1 were two novel QTLs. The alleles of these QTLs increasing trait values were dispersed in both parents, which well explained the transgressive segregation observed in this population. In addition, the interaction between qHd7.1 and qHd8 was detected under all LD conditions. Multiple-QTL model analysis revealed that all QTLs and their interactions explained over 80% of heading date variation and 50% of plant height variation. Two heading date QTLs were detected under SD condition. Of them, qHd10 were commonly identified under LD condition. The difference in QTL detection between LD and SD conditions indicated most heading date QTLs are sensitive to photoperiod. These findings will benefit breeding design for heading date and plant height in rice.  相似文献   

6.

Background

In crop species, QTL analysis is commonly used for identification of factors contributing to variation of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is, however, essential for utilisation in varietal improvement programs.

Results

A bibliographic survey of perennial ryegrass trait-dissection studies identified a total of 560 QTLs from previously published papers, of which 189, 270 and 101 were classified as morphology-, physiology- and resistance/tolerance-related loci, respectively. The collected dataset permitted a subsequent meta-QTL study and implementation of a cross-species candidate gene identification approach. A meta-QTL analysis based on use of the BioMercator software was performed to identify two consensus regions for pathogen resistance traits. Genes that are candidates for causal polymorphism underpinning perennial ryegrass QTLs were identified through in silico comparative mapping using rice databases, and 7 genes were assigned to the p150/112 reference map. Markers linked to the Lp DGL1, Lp Ph1 and Lp PIPK1 genes were located close to plant size, leaf extension time and heading date-related QTLs, respectively, suggesting that these genes may be functionally associated with important agronomic traits in perennial ryegrass.

Conclusions

Functional markers are valuable for QTL meta-analysis and comparative genomics. Enrichment of such genetic markers may permit further detailed characterisation of QTLs. The outcomes of QTL meta-analysis and comparative genomics studies may be useful for accelerated development of novel perennial ryegrass cultivars with desirable traits.
  相似文献   

7.
8.

Key message

QTLs were identified for traits assessed on field-grown grafted grapevines. Root number and section had the largest phenotypic variance explained. Genetic control of root and aerial traits was independent.

Abstract

Breeding new rootstocks for perennial crops remains challenging, mainly because of the number of desirable traits which have to be combined, these traits include good rooting ability and root development. Consequently, the present study analyzes the genetic architecture of root traits in grapevine. A segregating progeny of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera cv. Cabernet-Sauvignon × V. riparia cv. Gloire de Montpellier, used as rootstock, was phenotyped in grafted plants grown for 2 years in the field. Seven traits, related to aerial and root development, were quantified. Heritability ranged between 0.44 for aerial biomass to 0.7 for root number. Total root number was related to the number of fine roots, while root biomass was related to the number of coarse roots. Significant quantitative trait loci (QTLs) were identified for all the traits studied with some of them explaining approximately 20% of phenotypic variance. Only a single QTL co-localized for root and aerial biomass. Identified QTLs for aerial-to-root biomass ratio suggest that aerial and root traits are controlled independently. Genes known to be involved in auxin signaling pathways and phosphorus nutrition, whose orthologues were previously shown to regulate root development in Arabidopsis, were located in the confidence intervals of several QTLs. This study opens new perspectives for breeding rootstocks with improved root development capacities.
  相似文献   

9.
Lignin is closely related to the lodging resistance of common buckwheat (Fagopyrum esculentum Moench.). However, the characteristics of lignin synthesis related genes have not yet been reported. We investigated the lignin biosynthesis gene expression, activities of related enzymes, and accumulation of lignin monomers during branching stage, bloom stage, and milky ripe stage by real-time quantitative PCR, UVspectrophotometry, and gas chromatography-mass spectrometry in the 2nd internode of three common buckwheat cultivars with different lodging resistance. The results showed that lignin content and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) were closely related to the lodging resistance of common buckwheat. Further, we studied gene expression of cinnamate 4-hydroxylase (C4H), caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), cinnamoyl-CoA reductase (CCR), and caffeic acid O-methyltransferase (COMT). The lignin biosynthesis genes were divided into three classes according to their expression pattern: 1) expression firstly increasing and then descending (PAL, 4CL, CAD, C4H, CCoAOMT, F5H, and CCR), 2) expression remaining constant during maturation (C3H), and 3) expression decreasing with maturation (COMT). The present study provides preliminary insights into the expression of lignin biosynthesis genes in common buckwheat, laying a foundation for further understanding the lignin biosynthesis.  相似文献   

10.
Quantitative trait loci (QTLs) for the apparent quality of brown rice under high temperatures during ripening were analyzed using chromosomal segment substitution lines. Segments from the indica cultivar Habataki were substituted into a japonica cultivar with a Sasanishiki background. We found the following two QTLs for increasing grain quality in the Habataki allele on chromosome 3: (1) qTW3-2, located near the marker RM14702, decreased the percentage of total white immature (TWI) grains, and (2) qRG3-2, located near RM3766, increased the percentage of regular grains. The effects of these two QTLs were more obvious under high-temperature ripening conditions; hence, these loci are considered QTLs not only for reducing TWI grains but also for increasing high-temperature tolerance. Additionally, we found two QTLs, i.e., qTW3-1 and qRG3-1, responsible for reduced grain quality near RM14314 on chromosome 3. Although the QTL for narrow grains in the Habataki allele qNG3 was genetically linked to qTW3-2, the effect was only slightly significant, and the length/width ratio of qNG3-carrying grains was within the range observed in widely grown japonica cultivars. Incorporating the Habataki region, including qRG3-2 and qTW3-2 but not qTW3-1 and qRG3-1, in addition to previously reported grain quality QTLs in breeding japonica cultivars will improve high-temperature tolerance and grain quality.  相似文献   

11.
The improvement for drought tolerance requires understanding of the genetic control of wheat (Triticum aestivum L.) reaction to drought. In this study, a set of 131 recombinant inbred lines of wheat were investigated under well-watered (WW) and drought stress (DS) environments across 2 years to map quantitative trait loci (QTLs) for yield and physiological traits. A total of 225 QTLs were detected, including 32 non-environment-specific loci that were significant in both DS and WW, one drought-specific locus and two watering-specific loci. Three consistently-expressed QTLs (QTkw-3A.2, QTss-1A, and QScn-7A.1) were identified in at least three environments and the QTkw-1D.1 was significant in DS across the 2 years. By unconditional and conditional QTL analysis, spike number per plant and kernel number per spike were more important than thousand-kernel weight for grain yield (GY) at the given genetic background. Meta-analysis identified 67 meta-QTLs that contained QTLs for at least two traits. High frequency co-location of QTLs was found among either the spike-related traits or the six physiological traits. Four photosynthesis traits (CHL, LWUE, P N, and C i) were co-located with GY and/or yield components on various MQTLs. The results provided QTLs that warrant further study for drought tolerance breeding and are helpful for understanding the genetic basis of drought tolerance and the genetic contribution of yield components to GY at individual QTL level in wheat.  相似文献   

12.
Stem lodging in Sorghum is a major agronomic problem that has far-reaching economic consequences. More rapid and reliable advances in stem lodging resistance could be achieved through development of selective breeding tools that are not dependent on post hoc data or dependent on abiotic or biotic environmental factors. Our objective was to use sorghum to examine how mechanical stability is achieved and lost, and to provide insights into the development of a rapid and reliable phenotyping approach. The biomechanical properties of the stems of six bioenergy sorghum genotypes were investigated using a three-point bending test protocol. Important morphometric data were also collected, and previously collected lodging scores were used to associate with morphological and mechanical traits. Nodes were two to three-folds stronger, stiffer, and more rigid than internodes. In general, internodes were numerically weakest and more rigid between internodes 3 and 6, corresponding to the area where higher stem lodging is observed. Internode strength was negatively correlated with diameter (r = ?0.77, P < 0.05) and volume (r = 0.96, P < 0.01), while stem lodging was positively correlated with flexural rigidity (r = 0.85, P < 0.05) and volume (r = 0.78, P < 0.05). The analysis revealed key functional traits that influence the mode and location of stem lodging. Moreover, these results indicate the potential of these methods as a selective breeding tool for indirect selection of stem lodging resistance in bioenergy sorghum.  相似文献   

13.
Gossypium hirsutum L. is a widely cultivated species characterized by its high yield and wide environmental adaptability, while Gossypium barbadense is well known for its superior fiber quality. In the present report, we, for the first time, developed G. hirsutum chromosome segment introgression lines (ILs) in a G. barbadense background (GhILs_Gb) and genetically dissected the inheritance of lint yield and fiber quality of G. hirsutum in G. barbadense background. The GhILs_Gb contains introgressed segments spanning 4121.20 cM, which represents 82.20% of the tetraploid cotton genome, with an average length of 18.65 cM. A total of 39 quantitative trait loci (QTLs) for six traits are identified in this IL population planted in Xinjiang. Four QTL clusters are detected. Of them, however, three clusters have deleterious effects on fiber length and strength and boll weight, and only one cluster on Chr. D9 can be used in marker-assisted selection (MAS) to increase lint percentage and decrease micronaire value in G. barbadense. QTL mapping showed that most of yield-related QTLs detected have positive effects and increase lint yield in G. barbadense, while most of fiber quality-related QTLs have deleterious effects except for micronaire. It suggested that G. hirsutum evolved to have a high lint yield. Several lines improved in lint percentage and boll size in G. barbadense by introgressed one fragment of G. hirsutum have been developed from the GhILs_Gb. The ILs developed, and the analyses presented here will enhance the understanding of the genetics of lint yield and fiber quality in G. hirsutum and facilitate further molecular breeding to improve lint yield in G. barbadense.  相似文献   

14.

Key message

Map-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress.

Abstract

Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23–13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80–13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4–16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.
  相似文献   

15.
Previous studies in maize have identified three quantitative trait loci (QTLs) coding for high oleic acid content (HOAC) (QTLs oleic6-1, oleic6-2, and oleic6-3) at bins 6.04–6.05, proximal to the DGAT1-2 gene. The aims of this work were (i) to discover new markers for linkage disequilibrium (LD) and haplotype analysis distal to DGAT1-2, (ii) to develop a new DGAT1-2 PCR probe to detect the allele determining HOAC (F469 insertion), (iii) to conduct cluster analysis for kernel traits, and (iv) to assess genetic diversity, LD, and association analysis for kernel traits with the DGAT1-2 PCR probe and 13 markers previously mapped near DGAT1-2 in the Argentine temperate maize collection of 111 inbred lines. The results showed high haplotype diversity distal to DGAT1-2 and relatedness between the inbred line LP199 (with HOAC) and the Non-Stiff Stalk line W22 (reference genome). The frequency of F469 was low (20%). F469 was clustered with flint-grain type characteristics, whereas HOAC was associated with F469 across linear models. Genetic diversity at bins 6.04–6.05 was high (0.62), whereas LD extent was low (r2?≤?0.45). This low extent of LD indicates a high level of recombination and no LD between DGAT1-2 and markers flanking QTLs oleic6-1 to 3. Nevertheless, the significant LD between markers flanking those QTLs and the cosegregation of F469 with nc009 (markers flanking QTLs oleic6-1 and 2) during inbred line conversion suggest that these QTLs might contribute to HOAC in the breeding collection. However, further studies are needed to precise mapping at bins 6.04–6.05 for breeding purposes.  相似文献   

16.
Soybean is highly sensitive to photoperiod. To improve the adaptability and productivity of soybean, it is essential to understand the molecular mechanisms regulating flowering time. To identify new flowering time QTLs, we evaluated a BC3F5 population consisting of 120 chromosome segment substitution lines (CSSLs) over 2 years under field conditions. CSSLs were derived from a cross between the cultivated soybean cultivar Jackson and the wild soybean accession JWS156-1, followed by continuous backcrossing using Jackson as the recurrent parent. Four QTLs (qFT07.1, qFT12.1, qFT12.2, and qFT19.1) were detected on three chromosomes. Of these, qFT12.1 showed the highest effect, accounting for 36.37–38.27% of the total phenotypic variation over 2 years. This QTL was further confirmed in the F7 recombinant inbred line population (n?=?94) derived from the same cross (Jackson × JWS156-1). Analysis of the qFT12.1 BC3F5 residual heterozygous line RHL509 validated the allele effect of qFT12.1 and revealed that the recessive allele of qFT12.1 resulted in delayed flowering. Evaluating the qFT12.1 near-isogenic lines (NILs) under different growth conditions showed that NILs with the wild soybean genotype always showed later flowering than those with the cultivated soybean genotype. qFT12.1 was delimited to a 2703-kb interval between the markers BARCSOYSSR_12_0220 and BARCSOYSSR_12_0368 on chromosome 12. qFT12.1 may be a new flowering time gene locus in soybean.  相似文献   

17.
One hundred bacteria, isolated from rhizospheric soil and rhizoplane of healthy soybean plants, were assayed for antifungal activity against six Phytophthora sojae isolates. Nine of the tested bacteria inhibited the hyphal growth of P. sojae in vitro. They were subsequently evaluated for their in vitro traits and identified using the 16S rRNA gene sequences. Four of them (Paenibacillus sp.,—S1; Streptomyces sp.,—S9, S10 and S11) were further selected on the basis of their strongest antagonistic activity in vitro against P. sojae race 4, the predominant race in most growing soybean areas in Canada, and tested for their beneficial effects on soybean plants in the greenhouse. Results showed that application of bacterial strain S11 as seed coating reduced the disease severity by 57.1% and increased the root and shoot weight by and 140 and 108% respectively, in comparison to the diseased control. Overall, a positive correlation was recorded between the in vitro and in planta effects of the selected bacteria. This is promising for further application as select environmentally safe biological control agents in the protection of soybean against root rot diseases.  相似文献   

18.
Shoot fresh weight (SFW) is one of the parameters, used to estimate the total plant biomass yield in soybean. In the present study, a total of 188 F5:8 recombinant inbred lines (RIL) derived from an interspecific cross of PI 483463 (Glycine soja) and Hutcheson (Glycine max) were investigated for SFW variation in the field for three consecutive years. The parental lines and RILs were phenotyped in the field at the R6 stage by measuring total biomass in kg/plot to identify the QTLs for SFW. Three QTLs qSFW6_1, qSFW15_1, and qSFW19_1 influencing SFW were identified on chromosome 6, 15, and 19, respectively. The QTL qSFW19_1 flanked between the markers BARC-044913-08839 and BARC-029975-06765 was the stable QTL expressed in all the three environments. The phenotypic variation explained by the QTLs across all environments ranged from 6.56 to 21.32 %. The additive effects indicated contribution of alleles from both the parents and additive × environment interaction effects affected the expression of SFW QTL. Screening of the RIL population with additional SSRs from the qSFW19_1 region delimited the QTL between the markers SSR19-1329 and BARC-29975-06765. QTL mapping using bin map detected two QTLs, qSFW19_1A and qSFW19_1B. The QTL qSFW19_1A mapped close to the Dt1 gene locus, which affects stem termination, plant height, and floral initiation in soybean. Potential candidate genes for SFW were pinpointed, and sequence variations within their sequences were detected using high-quality whole-genome resequencing data. The findings in this study could be useful for understanding genetic basis of SFW in soybean.  相似文献   

19.
In order to detect genomic regions with different effects for some of the physiological and biochemical traits of wheat, four experiments were conducted at Research Farm of Agricultural and Natural Resources Research Center of Zabol in 2015–2016 and 2016–2017 growing seasons. The experiments were carried out using four alpha lattice designs with two replications under non-stress and terminal heat stress conditions. Plant materials used in this study included 167 recombinant inbred lines and their parents (‘SeriM82’ and ‘Babax’). Six traits including grain yield (GY), proline content (PRO), water soluble carbohydrates (WSC), maximum efficiency of photosystem II (Fv/Fm), cytoplasmic membrane stability (CMS) and chlorophyll content (CHL) were evaluated. Genetic linkage map consisted of 211 AFLP marker, 120 SSR marker and 144 DArT markers with 1864 cm length and 4.4 cm mean distance. QTL analysis was carried out using a mixed-model-based composite interval mapping (MCIM) method. By the combined analysis of normal phenotypic values, 27 additive QTLs and five pairs of epistatic effects were identified for studied traits, among which two additive and one epistatic QTL showed significant QTL?×?environment interactions. By the combined analysis of stress phenotypic values, a total of 26 QTLs with additive effects and 5 epistatic QTLs were detected, among which one additive and one epistatic QTL showed QTL?×?environment interactions. Six QTLs with major effects (QGY-2B, QGY-2D, QPro-5B, QWSC-4A, QFv/Fm-6A and QCMS-4B), which were common between two conditions could be useful for marker-assisted selection (MAS) in order to develop heat tolerant and high-performance wheat varieties.  相似文献   

20.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号