首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111900篇
  免费   2160篇
  国内免费   2380篇
  2023年   156篇
  2022年   198篇
  2021年   592篇
  2020年   525篇
  2019年   650篇
  2018年   12398篇
  2017年   11116篇
  2016年   8180篇
  2015年   1776篇
  2014年   1706篇
  2013年   1845篇
  2012年   5992篇
  2011年   14360篇
  2010年   13027篇
  2009年   9073篇
  2008年   10930篇
  2007年   12390篇
  2006年   1218篇
  2005年   1441篇
  2004年   1826篇
  2003年   1755篇
  2002年   1474篇
  2001年   707篇
  2000年   489篇
  1999年   299篇
  1998年   205篇
  1997年   168篇
  1996年   137篇
  1995年   93篇
  1994年   85篇
  1993年   86篇
  1992年   111篇
  1991年   106篇
  1990年   67篇
  1989年   64篇
  1988年   70篇
  1987年   60篇
  1986年   29篇
  1985年   32篇
  1984年   35篇
  1983年   42篇
  1982年   31篇
  1981年   29篇
  1979年   29篇
  1978年   24篇
  1977年   24篇
  1976年   23篇
  1972年   261篇
  1971年   287篇
  1962年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Insect and veteran trees are important parts of ecosystems and are usually included in ecological studies of forest management. The loss of veteran trees in woodlands and open landscapes would lead to the loss of saproxylic organisms—an important part of biodiversity. Hence, the persistence of many specialized insects depends on the presence of veteran trees scattered in woodlands (e.g. ancient wood pastures, game parks or protected areas), cities, towns and villages (e.g. avenues, parks or chateau parks) or open landscapes (e.g. fishpond dams, solitary trees or fruit orchards). Veteran tree conditions could be fairly well described by three components—diameter, age and microhabitats present. The problem is that diameter belongs to the most studied characteristics, while age and microhabitats, which can be quite complicated to measure, are much less studied. This paper illustrates that, due to this unbalanced use of indicators of veteran-tree conditions, we are still missing some important information on saproxylic species ecology—and sometimes only large trees might be studied, rather than real veterans. Although we already know that veteran trees are essential habitat for a range of saproxylic organisms, there are still gaps in our knowledge of the specific conditions that veteran trees provide. It is vital that these are quantified and understood so that this information can be used to conserve veteran trees and their associated species.  相似文献   
2.
3.
The Dicer1 allele is used to show that microRNAs (miRNAs) play important roles in astrocyte development and functions. While it is known that astrocytes that lack miRNAs are dysregulated, the in vivo phenotypes of these astrocytes are not well understood. In this study, we use Aldh1l1-EGFP transgene, a marker of astrocytes, to characterize mouse models with conditional Dicer1 ablation (via either human or mouse GFAP-Cre). This transgene revealed novel features of the defective astrocytes from the absence of miRNA. Although astrocyte miRNAs were depleted in both lines, we found histological and molecular differences in the Aldh1l1-EGFP cells between the two Cre lines. Aldh1l1-EGFP cells from hGFAP-Cre mutant lines displayed up-regulation of Aldh1l1-EGFP with increased proliferation and a genomic profile that acquired many features of wildtype primary astrocyte cultures. In the young mGFAP-Cre mutant lines we found that Aldh1l1-EGFP cells were disorganized and hyperproliferative in the developing cerebellum. Using the Aldh1l1-EGFP transgene, our work provides new insights into the roles of miRNAs in astrocyte development and the features of astrocytes in these two mouse models.  相似文献   
4.
5.
Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.  相似文献   
6.
Waterlogging is one of the major stresses limiting crop production worldwide. The understanding of the mechanisms of plant adaptations to waterlogging stress helps improve plant tolerance to stress. In this study, physiological responses and morpho-anatomical adaptations of seven different barley genotypes were investigated under waterlogging stress. The results showed that the waterlogging-tolerant varieties (TX9425, Yerong, TF58) showed less reduction in plant height, SPAD (soil–plant analyses development analyses) value, tillers, shoot and root biomasses than did the waterlogging-sensitive varieties (Franklin, Naso Nijo, TF57). Under waterlogging stress condition, the tolerant genotypes also showed a much larger number of adventitious roots than did the sensitive genotypes. More intercellular spaces and better integrated chloroplast membrane structures were observed in the leaves of the waterlogging-tolerant cultivars, which is likely due to increased ethylene content, decreased ABA content and less accumulation of O2.?. The ability to form new adventitious roots and intercellular spaces in shoots can also be used as selection criteria in breeding barley for waterlogging tolerance.  相似文献   
7.
Peroxisome proliferator-activated receptor gamma (PPARγ) has been implicated in the pathology of numerous diseases involving diabetes, stroke, cancer, or obesity. It is expressed in diverse cell types, including vessels, immune and glial cells, and neurons. PPARγ plays crucial roles in the regulation of cellular differentiation, lipid metabolism, or glucose homeostasis. PPARγ ligands also exert effects on attenuating degenerative processes in the brain, as well as in peripheral systems, and it has been associated with the control of anti-inflammatory mechanisms, oxidative stress, neuronal death, neurogenesis, differentiation, and angiogenesis. This review will highlight key advances in the understanding of the PPARγ-related mechanisms responsible for neuroprotection after brain injuries, both ischemia and traumatic brain injury, and it will also cover the natural and synthetic agonist for PPARγ, angiotensin receptor blockers, and PPARγ antagonists, used in experimental and clinical research. A better understanding of the pleiotropic mechanisms and applications of these drugs to improve the recovery and to repair the acute and chronic induced neuroinflammation after brain injuries will pave the way for more effective therapeutic strategies after brain deficits.  相似文献   
8.
Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.  相似文献   
9.
10.
Mantra meditation is easy to practice. “OM” Mantra is the highest sacred symbol in Hinduism. The present study investigated the temporal dynamics of oscillatory changes after OM mantra meditation. Twenty-three naive meditators were asked to perform loud OM chanting for 30 min and the EEG were subsequently recorded with closed eyes before and after it. To obtain new insights into the nature of the EEG after OM chanting, EEG signals were analyzed using spectral domain analysis. Statistical analysis was performed using repeated measures of analysis of variance. It did not reveal any specific band involvement into OM mantra meditation. But significantly increase in theta power was found after meditation when averaged across all brain regions. This is the main effect of OM mantra meditation. However, the theta power showed higher theta amplitude after condition at all regions in comparison to the before condition of meditation. Finding was similar to other studies documenting reduction in cortical arousal during a state of relaxation. The study argues for the potential role of loud ‘OM’ chanting in offering relaxation. It provides a new perspective of meditation to the naive meditators. This information may help to demystify meditation and encourage those considering this as beneficial practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号