首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wan P  Wu K  Huang M  Yu D  Wu J 《Environmental entomology》2008,37(4):1043-1048
Genetically modified cotton that produces a crystalline protein from Bacillus thuringiensis subsp. kurstaki (Berliner) (Bt) has been widely deployed to manage lepidopteran insect pests in cotton growing areas worldwide. However, susceptibility of different insect species to Bt protein varies, which may affect lepidopteran pest populations in the field. Studies on effects of two transgenic cotton lines (BG1560 and GK19) carrying a Cry1A gene on common cutworm Spodoptera litura F. (Lepidoptera: Noctuidae), were conducted during 2002-2005 in the cotton planting region of the Yangtze River valley of China. Results showed that common cutworm larvae had low susceptibility to Bt cotton. There was no significant difference in larval population densities in conventional and Bt cotton fields. However, the larval populations of the insect on conventional plants treated with chemical insecticides for control of target pest of Bt cotton were significantly lower than that in Bt cotton fields. These results indicated that the common cutworm was the potential to become a major and alarming pest in Bt cotton fields, and therefore efforts to develop an effective alternative management strategy are needed.  相似文献   

2.
区域性农田景观格局对棉蚜种群数量的生态学效应   总被引:1,自引:0,他引:1  
农田景观格局的变化显著影响害虫的发生和危害,不同景观格局会对害虫的种群数量产生不同程度的影响,因而明确农田景观格局对害虫的生态学效应是控制害虫的重要前提之一。以山东省的棉花种植区为研究区域,选取14个典型的尽量临近不同土地覆盖类型的棉花生产县,通过卫星遥感影像和土地覆盖分类数据综合分析获得取样县/区的景观因子指数,并系统调查对应县/区的棉蚜种群数量。省级范围的大空间尺度下分析景观组成、景观构成和景观结构等多因子分别与棉田中苗蚜和伏蚜种群的相关性。研究结果表明棉蚜的种群数量与景观格局有密切的关系,且棉蚜发生的两个时期苗蚜和伏蚜对景观因子的响应特征并不完全一致。苗蚜的种群数量与景观总面积、耕地的分形指数、县域范围的蔓延度和县域范围的回旋半径等呈显著正相关,与Simpson多样性指标呈显著负相关;伏蚜的种群数量与斑块丰富密度、居住工业交通的蔓延度等呈显著正相关。总之,苗蚜和伏蚜对景观的蔓延度(形)响应基本上是一致的,景观的破碎化程度越小,伏蚜和苗蚜发生越重。而苗蚜和伏蚜对景观多样性(质)的响应不一致,景观多样性高的农田景观不利于苗蚜的发生,对伏蚜的影响不显著;而丰富度密度有助于伏蚜的发生,却对苗蚜没有显著影响。这一结果显示了农业害虫的不同发生时期对农田景观格局响应的复杂性。  相似文献   

3.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

4.
The cotton aphid, Aphis gossypii Glover, is one of the most important agricultural insect pests. Pyrethroid and neonicotinoid insecticides have generally shown excellent control of A. gossypii, but many populations of this pest have developed resistance against these classes of insecticides. The success of insecticide resistance management strategies requires detailed knowledge of both phenotype and genotype of the target insect pest. In this study, we attempted to understand the molecular status of insecticide resistance in cotton aphid populations in Xinjiang Uygur Autonomous Region of China, the major cotton planting region of China. In addition to the previously reported M918L mutation, we discovered another substitution (M918V) in the voltage-gated sodium channel (VGSC). Moreover, we developed a molecular assay that could be used to detect precisely the R81T mutation in the nicotinic acetylcholine receptor (nAChR). This survey revealed that 918L was the predominant VGSC allele with a frequency ranging from 50.0% to 56.7%. Notably, appreciable frequencies (between 10% and 40%) of the resistance 81T allele of the nAChR gene were detected in three investigated populations. The prevalent co-occurrence of both VGSC 918L/V and nAchR 81T indicates a worrisome situation of multiple resistance to both pyrethroids and neonicotinoids.  相似文献   

5.
An J  Gao Y  Wu K  Gould F  Gao J  Shen Z  Lei C 《Journal of economic entomology》2010,103(6):2169-2173
Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.  相似文献   

6.
The fennel aphid, Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a major pest of fennel, Foeniculum vulgare Miller in northeast region of Brazil. We hypothesize that intercropping can be used as an alternative pest management strategy to reduce aphid yield loss in fennel. Thus, we investigated the severity of fennel plant damage in relation to infestation by the fennel aphid and predation by Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) (spotless lady beetle), green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and Scymnus spp. (Coleoptera: Coccinellidae) in sole fennel plots and plots of fennel intercropped with cotton with colored fibers. The fennel aphid populations in nontreated plots were significantly larger in sole fennel plots than in intercropped plots. The highest densities of C. sanguinea, green lacewings and Scymnus spp., associated with the suppression of fennel aphid populations was found in fennel in the intercropping systems. Fennel aphids reduced the fennel seed yield by 80% in the sole fennel plots compared with approximately 30% for all intercropping systems. The results obtained in this research are of practical significance for designing appropriate strategies for fennel aphid control in fennel-cotton intercropping systems. In summary, intercropping fennel with cotton with colored fibers apparently promoted biocontrol of fennel aphid in fennel.  相似文献   

7.
Generalist natural enemies may be well adapted to annual crop systems in which pests and natural enemies re-colonize fields each year. In addition, for patchily-distributed pests, a natural enemy must disperse within a crop field to arrive at infested host patches. As they typically have longer generation times than their prey, theory suggests that generalist natural enemies need high immigration rates to and within fields to effectively suppress pest populations. The soybean aphid, Aphis glycines Matsumura, is a pest of an annual crop and is predominantly controlled by coccinellids. To test if rates of coccinellid arrival at aphid-infested patches are crucial for soybean aphid control, we experimentally varied coccinellid immigration to 1 m2 soybean patches using selective barriers and measured effects on A. glycines populations. In a year with low ambient aphid pressure, naturally-occurring levels of coccinellid immigration to host patches were sufficient to suppress aphid populations, while decreasing coccinellid immigration rates resulted in large increases in soybean aphid populations within infested patches. Activity of other predators was low in this year, suggesting that most of the differences in aphid population growth were due to changes in coccinellid immigration. Alternatively, in a year in which alate aphids continually colonized plots, aphid suppression was incomplete and increased activity of other predatory taxa contributed to adult coccinellid predation of A. glycines. Our results suggest that in a system in which natural enemy populations cannot track pest populations through reproduction, immigration of natural enemies to infested patches can compensate and result in pest control.  相似文献   

8.
免耕法对棉田生态系统能流功能的影响   总被引:4,自引:1,他引:3  
比较了常规与免耕法对棉田生态系统中土壤微生物、害虫、天敌、棉株及其整个棉田生态系统能流功能的影响 .结果表明 ,免耕棉田土壤微生物量与年呼吸耗氧量均明显高于常规棉田 ,分别为常规棉田的 1 .32倍和 1 .63倍 ;免耕棉田的苗蚜与秋蚜、2代与 4代棉铃虫种群生产力下降 ,而伏蚜与 3代棉铃虫种群生产力增加 ;免耕棉田内天敌种群生产力及其捕食利用效率下降 ;免耕可提高棉田系统的光能利用率和总生产力 ,减少辅助能的投入 ,具有低耗、高效的特点 .  相似文献   

9.
Although genetically modified (GM) plants expressing toxins from Bacillus thuringiensis (Bt) protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L). Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris) were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC50 = 637 µg ml−1). The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.  相似文献   

10.
Cotton is one of the most economically important crops in China, while insect pest damage is the major restriction factor for cotton production. The strategy of integrated pest management (IPM), in which biological control plays an important role, has been widely applied. Nearly 500 species of natural enemies have been reported in cotton systems in China, but few species have been examined closely. Seventy-six species, belonging to 53 genera, of major arthropod predators and parasitoids of lepidoptera pests, and 46 species, belonging to 29 genera, of natural enemies of sucking pests have been described. In addition, microsporidia, fungi, bacteria and viruses are also important natural enemies of cotton pests. Trichogramma spp., Microplitis mediator, Amblyseius cucumeris, Bacillus thuringiensis and Helicoverpa armigera nuclear polyhedrosis virus (HaNPV) have been mass reared or commercially produced and used in China. IPM strategies for cotton pests comprising of cultural, biological, physical and chemical controls have been developed and implemented in the Yellow River Region (YRR), Changjiang River Region (CRR) and Northwestern Region (NR) of China over the past several decades. In recent years, Bt cotton has been widely planted for selectively combating cotton bollworm, H. armigera, pink bollworm, Pectinophora gossypiella, and other lepidopteran pest species. As a result of reduced insecticide sprays, increased abundance of natural enemies in Bt cotton fields efficiently prevents outbreaks of other pests such as cotton aphids. In contrast, populations of mirid plant bugs have increased dramatically due to a reduction in the number of foliar insecticide applications for control of the bollworms in Bt cotton, and now pose a key problem in cotton production. In response to this new pest issue in cotton production, control strategies including biological control measures are being developed in China.  相似文献   

11.
Cotton aphid (Aphis gossypii G.) populations seemed to fluctuate over the past years in cotton (Gossypium hirsutum L.) perhaps as a result of excessive use of insecticides for controlling more problematic pests. Contradictory plant responses have been observed depending upon the aphid/plant system, and it is unclear if cotton aphids, abiotic stress or both are responsible for cotton yield reduction in aphid-infested fields. Our objectives were to investigate the diurnal changes in the physiology of cotton leaves following aphid herbivory, and the diurnal pattern of aphid feeding. The experiment was conducted in a growth chamber using the cotton cultivar ‘Stoneville 474’. Leaves of the same age and size were infested with wingless adults plus nymphs. Cotton aphids were allowed to increase in numbers without restriction for 9 days, after which the amounts of carbohydrates in aphid-honeydew, and the number of honeydew droplets excreted per aphid were measured. Photosynthetic rates, dark respiration rates and foliar non-structural carbohydrates were measured. The amount of individual carbohydrates found in the honeydew was significantly different with time. The total amount of carbohydrates excreted per aphid within a 24-h period averaged 2.5 μg. The number of honeydew droplets excreted per aphid varied significantly from time to time period. Cotton aphids did not significantly alter photosynthesis or respiration rates or non-structural carbohydrates on leaves. Aphid populations of approximately 300 per leaf on the 9th day of infestation did not appear to significantly alter the physiology of cotton leaves.  相似文献   

12.
新疆棉区主要害虫的演替及其机理分析   总被引:20,自引:4,他引:16  
阐述了新疆棉区主要害虫的演替及其机理。1950~1960年主要害虫为黄地老虎、牧草盲蝽象、烟蓟马、苜蓿蚜为主;1970~1980年以棉铃虫、烟蓟马、棉长管蚜、棉红蜘蛛为主;从1990年开始以棉铃虫、棉蚜、棉红蜘蛛为主。导致这一演替的主要原因为作物布局、耕作制度、栽培方法、管理技术的变化和农药化肥的过量施用。  相似文献   

13.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

14.
Overreliance on pesticides has large environmental and human health costs that compel researchers and farmers to seek alternative management tactics for crop pests. For insect pests, increasing crop species diversity via intercropping and using semiochemicals to alter local arthropod populations have separately proven effective at reducing pest densities. Here, we combine these two tactics in an effort to gain better control of Sitobion avenae (Fabricius) (Hemiptera: Aphididae), the English grain aphid, a major pest of cereal production worldwide. We conducted field experiments over 2 years testing the effectiveness of combining intercropping of wheat and oilseed rape with release of methyl salicylate (MeSA). We found that maximum and mean aphid densities were highest in wheat monocultures, significantly lower in intercropped plots and MeSA plots, and lowest when intercropping and MeSA release were combined by obtaining highest densities of predatory lady beetles and parasitoids rates. Importantly, grain yield and quality showed a similar pattern: they were highest for combined intercropped/MeSA plots, intermediate in plots with intercropping or MeSA alone, and lowest in control monoculture plots. Our results suggest that combining these two tactics holds significant promise for improved management of aphid populations and emphasize the need to integrate alternative pest control approaches to optimize sustainable insect pest management.  相似文献   

15.
氮肥对棉田主要害虫种群密度及棉花产量的影响   总被引:4,自引:0,他引:4  
通过2年的田间研究,分析了3种不同施氮水平对棉花主要害虫棉玲虫、棉蚜种群动态、棉花蕾铃脱落及棉花产量的影响。结果表明,增施氮肥的棉田棉铃虫和棉蚜数量比对照田要高,但它们之间的差异没有达到显著的水平。不同年份对棉铃虫种群密度有显著影响,但对棉蚜种群没有显著影响。蕾花期施肥可减轻棉铃虫为害造成的花蕾脱落和自然脱落,增加有效铃数和产量,但增加量没有达到显著水平。  相似文献   

16.
Insect herbivores may undergo genetic divergence on their host plants through host‐associated differentiation (HAD). Much of what we know about HAD involves insect species with narrow host ranges (i.e., specialists) that spend part or all their life cycle inside their hosts, and/or reproduce asexually (e.g., parthenogenetic insects), all of which are thought to facilitate HAD. However, sexually reproducing polyphagous insects can also exhibit HAD. Few sexually reproducing insects have been tested for HAD, and when they have insects from only a handful of potential host‐plant populations have been tested, making it difficult to predict how common HAD is when one considers the entire species' host range. This question is particularly relevant when considering insect pests, as host‐associated populations may differ in traits relevant to their control. Here, we tested for HAD in a cotton (Gossypium hirsutum) pest, the cotton fleahopper (CFH) (Pseudatomoscelis seriatus), a sexually reproducing, highly polyphagous hemipteran insect. A previous study detected one incidence of HAD among three of its host plants. We used Amplified fragment length polymorphism (AFLP) markers to assess HAD in CFH collected from an expanded array of 13 host‐plant species belonging to seven families. Overall, four genetically distinct populations were found. One genetically distinct genotype was exclusively associated with one of the host‐plant species while the other three were observed across more than one host‐plant species. The relatively low degree of HAD in CFH compared to the pea aphid, another hemipteran insect, stresses the likely importance of sexual recombination as a factor increasing the likelihood of HAD.  相似文献   

17.
Remote sensing can be used in combination with ground sampling to detect aphid- (Aphis gossypii Glover) infested cotton (Gossypium hirsutum L.). Changes in wavelengths in the near-infrared (NIR) have proven useful for such detection, but these changes can be confused with other factors stressing plants, such as water deficiency and nutrient status. This study was designed to test the utility of this technology to distinguish between two factors stressing plants: nitrogen deficiency and aphids. Field plots were created by applying varying rates of nitrogen to cotton at different dates in the growing season in 2003 and 2004. Subplots were created by applying disruptive insecticides, which increased aphid populations in a portion of the subplots. Airplane and satellite remote sensing data in 2003 and 2004 were supplemented with ground sampling of aphid populations in both years. Insecticide application, nitrogen application rate and date influenced aphid abundance. Cotton with higher aphid populations could be distinguished from cotton with natural aphid infestations independent of plant nitrogen status using a NIR wavelength in 2003 and a proprietary 2004 index. Complex distinctions among varying nitrogen treatments and aphid abundance were not possible using this data. In the future, possible confounding factors should be investigated from the perspective of their change on crop physiology before remote sensing can be used in an integrated pest management (IPM) program.  相似文献   

18.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

19.
How aphid alarm pheromone can control aphids: a review   总被引:1,自引:0,他引:1  
Aphids are the major pests of arable crops, mostly in temperate regions. They are monophagous as well as polyphagous. They inflict damage in brassica, potato, cotton, vegetable and fruit crops. They damage their host plant directly by feeding upon their phloem sap, or indirectly by transmitting pathogens to them. Their life cycle can be autoecious as well as heteroecious. Aphids use semiochemicals for various purposes, in gathering information from their environment and for communication among themselves. They protect themselves from predators and parasitoids by escape response which is arbitrated by use of alarm pheromone signalling. When alarm pheromone, (E)-ß-farnesene, is released, nearby aphids exhibit a variety of behaviours like moving away, running, dropping off the plant and even attacking the predator. Previous studies of integrated pest management strategies have been aimed at the usage of alarm pheromone. However, scientists require complete knowledge of aphid ecology as well as aphid interaction with its natural enemies to establish efficient and viable biological control. This review presents analysis of the existing aphid pest management methodologies and effectiveness of alarm pheromone on aphids and their natural enemies.  相似文献   

20.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), or fall armyworm, is an important agricultural pest of several crops in the Western Hemisphere, including cotton (Gossypium L.). Two morphologically identical host strains of fall armyworm exist that differ in plant host use and habitat distribution. The corn-strain is a primary pest of corn, Zea mays L., whereas the rice-strain is the majority population infesting rice (Oryza spp.) and turfgrass (Cynodon spp.). With the increased use of Bacillus thuringiensis (Bt) toxin-expressing cotton varieties and the necessity of ensuring adequate refuge areas to prevent the spread of Bt toxin resistance, it is crucial to identify the alternative plant hosts available for the fall armyworm population infesting cotton. Stable isotope analysis combined with the molecular analysis of strain-specific markers was used to investigate whether one or both strains routinely develop on cotton grown in the Mississippi delta. We found that the majority of fall armyworm adults present during the early cotton growing season arose from C4 plants (e.g., corn and sorghum, Sorghum vulgare Pers.) and that the only strain likely to be developing on cotton (a C3 plant) in substantial numbers was the corn-strain. The population distribution patterns observed were consistent with corn providing an important refuge for the fall armyworm strain infesting cotton and suggested that late season populations in the Mississippi delta may be migrants from more northern corn areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号