首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
本文用N ̄(15)标记水稻和绿肥研究了稻田土壤-作物-家畜系统中氮的循环。N ̄(15)标记稻草喂羊,羊体回收饲料稻草N31.16%,羊粪28.26%,羊尿5.72%,总回收65.14%,损失34.86%。将羊粪尿单施,稻谷回收饲料稻草N3.19%,水稻全株回收4.82%,土壤残留19.00%,损失10.14%。故羊体、水稻及土壤残留共回收饲料稻草N54.98%.将羊粪与尿素配施,则饲料稻草N的总回收率为55.88%。N ̄(15)标记绿肥喂猪;猪体回收饲料绿肥N23.51%.猪粪23.85%,猪尿28.76%,总回收率76.12%,损失率23.88%。将猪粪、尿还田,稻谷回收饲料绿肥N6.69%,水稻全株回收10.05%,土壤残留19.17%,故猪体、水稻和土壤残留共回收饲料绿肥N52.73%,将猪粪与尿素配施,则饲料绿肥N的总回收率为52.75%。  相似文献   

2.
不同树种混交林及其纯林对土壤理化性质影响的研究   总被引:41,自引:11,他引:30  
对针阔混交林土壤理化性质的研究表明,针阔混交林比针叶树纯林对土壤的改良作用要好,它使土壤总孔隙度增加2—19%,水分含量增加6—31%,枯枝落叶年凋落量增加2—200%;土壤养分含量全N、NH4-N、代换性Ca、代换性Mg和腐殖质含量分别增加45—75%、33—82%、55—85%、44—84%和37—46%.  相似文献   

3.
郝玉有  刘爱英 《菌物系统》1999,18(3):307-310
在粉被虫草无性型--粉被马利娅霉原生质体和再生的前期研究基础上,报道了通过原生质体诱变培育高产N^6-(2-羟乙基)腺苷菌株的研究结果。粉被马利娅霉Cp-14单孢子株经15W紫外灯照射后,获得一高产突变株MpM-135。经多代移植后,此这经出发菌株Cp-14的N^6-(2-羟乙基)腺苷含量提高了14.8%。实验还表明,粉被虫草无性力丝提取物对枯草杆菌抗紫外辐射效果与菌丝所含N^6-(2-羟乙基)腺  相似文献   

4.
采用含有稳定同位素 ̄(15)N-硫铵为主要氮源的专用发酵培养液配方和相应的工艺条件,在国内首次用微生物直接发酵研制成L-缬氨酸- ̄(15)N高丰度精制产品。产品 ̄(15)N丰度97.68%,反比原料 ̄(15)N-硫铵丰度下降0.53%,L-缬氨酸- ̄(15)N产酸率最高达4%以上(未校正)。每克 ̄(15)N-硫铵可得到1克以上的L-缬氨酸- ̄(15)N(分析值)。提取精制收率平均为80-90%(单程),最高达到95%以上(二次提取)。实际每克 ̄(15)N-硫铵可得0.6克左右的L-缬氨酸- ̄(15)N精制产品。  相似文献   

5.
农田生态系统N、P营养平衡及其肥料效应   总被引:5,自引:1,他引:4  
9年的农田生态系统N、P营养平衡定位试验研究表明,N、P肥配合施用,实行秸秆还田,可提高土壤有机质和全N含量,使土壤速效和迟效P库容量得到补充.最后几年的P肥利用率达21.1—65.1%,N肥为49—75%.储备性施P第1年的利用率只有6.5-7.3%,而前3年之和达到24—28.5%,9年3个时段平均利用率27.9—42.8%,补偿性施P的19.5—42.9%.施P65.5kg·ha-1·yr-1时,既能满足作物对P的需求又能补充土壤速效P库容量.  相似文献   

6.
研究了沙棘作为下木在混交林中的作用。结果表明,沙棘有明显的供N效应。林冠下生长7a的沙棘,年平均固N量达54kg·hm^-2。土壤含N量比杨树或柳树纯林提高20 ̄22%,主林木高生长比纯林提高18 ̄19.4%。  相似文献   

7.
采用含有稳定同位素15N-硫铵为主要氮源的专用发酵培养液配方和相应的工艺条件,在国内首次用微生物直接发酵研制成L-缬氨酸-15N高丰度精制产品。产品15N丰度97.68%,反比原料15N-硫铵丰度下降0.53%,L-缬氨酸-15N产酸率最高达4%以上(未校正)。每克15N-硫铵可得到1克以上的L-缬氨酸-15N(分析值)。提取精制收率平均为80-90%(  相似文献   

8.
外加氮源对杉木叶凋落物分解及土壤养分淋失的影响   总被引:37,自引:0,他引:37       下载免费PDF全文
采用原位(In situ)模拟实验方法研究了外加N源对杉木叶凋落物分解及土壤养分淋失的影响,结果表明,施加NH^+4-N时,杉木叶凋落物的失重率与对照(未加任何N的处理)相比,没有差异:而施加NO^-1-N时,使杉木叶凋落物分解速率显著提高(p=0.05,达10%以上,与施加NH^+4-N相比,施加NO^-3-N明显促进了杉木叶凋落物的分解(p=0.05)。施加NH^+4-N和NO3^--N会产生  相似文献   

9.
从新疆鄯善砍儿乡砂地生长的玉米根际分离到一株联合固氮菌K19-1,经鉴定为植生克雷伯氏菌。K19-1在40℃,于无氮培养基上生长良好,并具有乙炔还原及^15N2还原能力。nifHpromoter:lacZ融合子在K19-1中的表达在40℃不受阻抑。NH4^+不抑制K19-1的固氮酶活性,但阻抑nifHpromoter:lacZ融合子在K19-1中表达。K19-1在厌氧条件下具有固氮活性,在氧浓度增  相似文献   

10.
采用含有稳定同位素15N-硫酸铵为主要氮源的专用发酵培养基配方和提取精制条件,在国内、外首次采用基因工程菌AA7(pTH2)(AHVrAECr,Thr-N-,Homr,Apr)直接发酵方法研制L-苏氨酸-N15高丰度精制产品。每mol15N-硫酸铵实际得到0.638molL-苏氨酸-N15,产品N15丰度达99.09%,仅比原料15N-硫酸铵丰度下降0.42%,提取精制得率高达92.83%。  相似文献   

11.
Chopped wheat straw was homogeneously mixed with urine of horses (5.75 gN per 1, 16.88 atom‐% 15N‐excess) and airtightly stored in plastic containers for 6 months. Three rumen fistulated sheep and goats each were fed with untreated or urine treated straw. Concentrate was added to straw. Untreated and urine treated straw were given in nylon bags and incubated in the rumen of sheep and goats for 1, 3, 6, 12, 24, 48 and 72 hours. A three compartment exponential function was used to fit the measurements of 15N‐ex‐cess and 15N‐amount of bag content. The curves and the calculated partial Y‐values of the three compartments show the inflow and outflow of 15N into or from the bags and allow conclusions about the binding of urine N. Most N of urine was not compactly bound by straw during storage. Primarily micro‐bial N was attached to the straw in the rumen. About 6% of urine N were bound more compact to the straw. Similar curves were calculated for 15N‐excess and 15N‐amount of nylon bags. The curves allow conclusions about tracer flows without quantitative knowledge. There were no significant differences between animal species.  相似文献   

12.
Summary Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples from unamended soil; while the activity of the rhizosphere samples from soils receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation.  相似文献   

13.
The effects of dairy cow urine and defoliation severity on biological nitrogen fixation and pasture production of a mixed ryegrass-white clover sward were investigated over 12 months using mowing for defoliation. A single application of urine (equivalent to 746 kg N ha–1), was applied in late spring to plots immediately after light and moderately-severe defoliation (35 mm and 85 mm cutting heights, respectively) treatments were imposed. Estimates of percentage clover N derived from N2 fixation (%Ndfa) were compared by labelling the soil with 15N either by applying a low rate of 15N-labelled ammonium sulphate, immobilising 15N in soil organic matter, adding 15N to applied urine, or by utilising the small differences in natural abundance of 15N in soil. Urine application increased annual grass production by 85%, but had little effect on annual clover production. However, urine caused a marked decline in %Ndfa (using an average of all 15N methods) from 84% to a low of 22% by 108 days, with recovery to control levels taking almost a year. As a result, total N fixed (in above ground clover herbage) was reduced from 232 to 145 kg N ha–1 yr–1. Moderately–severe defoliation had no immediate effect on N2 fixation, but after 108 days the %Ndfa was consistently higher than light defoliation during summer and autumn, and increased by up to 18%, coinciding with an increase in growth of weeds and summer-grass species. Annual N2 fixation was 218 kg N ha–1 yr–1 under moderately-severe defoliation compared to 160 kg N ha–1 yr–1 under light defoliation. Estimates of %Ndfa were generally similar when 15N-labelled or immobilised 15N were used to label soil regardless of urine and defoliation severity. The natural abundance technique gave highly variable estimates of %Ndfa (–56 to 24%) during the first 23 days after urine application but, thereafter, estimates of %Ndfa were similar to those using 15N-labelling methods. In contrast, in urine treated plots the use of 15N-labelled urine gave estimates of %Ndfa that were 20–30% below values calculated using conventional 15N-labelling during the first 161 days. These differences were probably due to differences in the rooting depth between ryegrass and white clover in conjunction with treatment differences in 15N distribution with depth. This study shows that urine has a prolonged effect on reducing N2 fixation in pasture. In addition, defoliation severity is a potential pasture management tool for strategically enhancing N2 fixation.  相似文献   

14.
Thomsen  Ingrid K.  Kjellerup  Viggo  Jensen  Bendt 《Plant and Soil》1997,197(2):233-239
Two animal slurries either labelled with 15N in the urine or in the faeces fraction, were produced by feeding a sheep with unlabelled and 15N-labelled hay and collecting faeces and urine separately. The slurries were applied (12 g total N -2) to a coarse sand and a sandy loam soil confined in lysimeters and growing spring barley (Hordeum vulgare L). Reference lysimeters without slurry were supplied with15 NH4 15NO3 corresponding to the inorganic N applied with the slurries (6 g N m-2). In the second year, all lysimeters received unlabelled mineral fertilizer (6 g N m-2) and grew spring barley. N harvested in the two crops (grain + straw) and the loss of nitrate by leaching were determined. 15N in the urine fraction was less available for crop uptake than mineral fertilizer 15N. The first barley crop on the sandy loam removed 49% of the 15N applied in mineral fertilizer and 36% of that applied with urine. The availability of fertilizer 15N (36%) and urine15 N (32%) differed less on the coarse sand. Of the15 N added with the faeces fraction, 12–14% was taken up by the barley crop on the two soils. N mineralized from faeces compensated for the reduced availability of urine N providing a similar or higher crop N uptake in manured lysimeters compared with mineral fertilized ones.About half of the total N uptake in the first crop originated from the N applied either as slurry or mineral fertilizer. The remaining N was derived from the soil N pool. Substantially smaller but similar proportions of15 N from faeces, urine and fertilizer were found in the second crop. The similar recoveries indicated a slow mineralization rate of the residual faeces N since more faeces was left in the soil after the first crop.More N was lost by leaching from manured lysimeters but as a percentage of N applied, losses were similar to those from mineral fertilizer. During the first and second winter, 3–5% and 1–3%, respectively, of the 15N in slurry and mineral fertilizer was leached as nitrate. Thus slurry N applied in spring just before sowing did not appear to be more prone to loss by nitrate leaching than N given in mineral fertilizer. Slurry N accounted for a higher proportion of the N leached, however, because more N was added in this treatment.  相似文献   

15.
A 15N labelling technique was used to measure N2O and N2 emissions from an undisturbed grassland soil treated with cow urine and held at 30 cm water tension and 20°C in a laboratory. Large emissions of dinitrogen were detected immediately following urine application to pasture. These coincided with a rapid and large increase in soil water-soluble carbon levels, some of this increase being attributed to solubilization of soil organic matter by high pH and ammonia concentrations. Emissions of nitrous oxide generally increased with time in contrast to dinitrogen fluxes which decreased as time progressed. Estimated losses of N2O and N2 over a 30 day period were between 1 to 5% and 30 to 65% of the urine N applied plus N mineralized from soil organic matter, respectively. Most of the N2 and N2O originated from denitrification with nitrification-denitrification being of minor significance as a source of N2O. Comparisons of the 15N enrichments in the soil mineral N pools and the evolved N2O suggested that much of the N2O was produced in the 5–8 cm zone of the soil. It is concluded that established grassland soils contain large amounts of readily-oxidizable organic carbon which may be used by soil denitrifying organisms when nitrate is non-limiting and soil redox potential is lowered due to high rates of biological activity and high soil moisture contents. ei]{gnR}{fnMerckx}  相似文献   

16.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

17.
Glendining  M.J.  Poulton  P.R.  Powlson  D.S.  Macdonald  A.J.  Jenkinson  D.S. 《Plant and Soil》2001,233(2):231-239
In an earlier paper we presented data from an experiment in which nitrogen-15-labelled fertilizer was applied in spring to barley on the Rothamsted long-term Spring Barley Experiment, at rates of 48, 96 or 144 kg N ha–1. A substantial proportion (between 28 and 39%) of this 15N remained in the soil (0–70 cm) and stubble at harvest, mostly in organic form. The present paper follows the fate of this `residual' 15N over the following 2 years. Small amounts of `residual' 15N were recovered in the following two spring barley crops; 8% in the first and 3% in the second. The overall loss of `residual' 15N (i.e. `residual' 15N not recovered in crops and soil to a depth of 70 cm) over the 2 years was 23%. This is equivalent to just 8% of the total 15N originally applied. There was surprisingly little difference in the behaviour of the `residual' 15N in soils containing very different quantities of soil organic matter.  相似文献   

18.
Summary Five crops of oats were grown over a 14-month period on a Chester silt loam soil fertilized with N15-labelled (NH4)2SO4. All plant material from the first four crops was returned to the soil. Following a fifth crop, oat tops and roots were harvested, and the soil was subjected to repeated extractions by autoclaving in 0.01M CaCl2. The distribution of N15 and of indigenous soil N among chemical fractions of the extracts, and in the acid-soluble and acid-soluble and acid-insoluble portions of the soil residues following 0.01M CaCl2 extraction, was remarkably similar. Since appreciable equilibrations between added N15 and the more resistant forms of soil organic N is unlikely, it is postulated that fertilizer N became incorporated in newly-formed complexes, similar to those already present in the soil. This view is in harmony with the finding that percentage removals of total and N15-labelled N remained almost the same, even with recovery of approximately 55 per cent of the amounts originally present. N mineralization capacity of the soil was reduced appreciably as a result of extraction.  相似文献   

19.
Soil nitrogen heterogeneity in a Dehesa ecosystem   总被引:1,自引:0,他引:1  
The C mineralization and N transformations during the decomposition of sunflower stalks (Helianthus annuus L.) and wheat straw (Triticum aestivum L.) with and without addition of (NH4)2SO4 (27.53 atom% 15N) were studied in a Vertisol. Soil samples were incubated under aerobic conditions for 224 days at 22 °C. The plant residues were added at a rate of 5.2 g kg-1 soil. Nitrogen was applied at a rate of 50.7 mg N kg-1 soil. Carbon dioxide emission and inorganic N content in soil were periodically determined. Gross N immobilization and remineralization were calculated on the basis of the isotopic dilution technique. At the end of the incubation period a 15N balance was established. Respectively, 68 and 45% of the applied residue-C mineralized from the sunflower stalks and wheat straw after 224 days. Both crop residues caused losses of up to 25% of added 15N after 224 days of incubation. These 15N losses were about three times larger than in the control soil, and were probably due to denitrification. The net immobilization of soil derived N following residue incorporation was largest in the case of wheat straw, depleting all soil inorganic N. In the wheat straw treatment with added (NH4)2SO4 soil inorganic N remained available, resulting in an enhanced initial C mineralization and N immobilization compared to the treatment without added N. In the case of the sunflower stalks, the high inorganic N content of the stalks suppressed the effects of N addition on C mineralization and N immobilization/mineralization. Gross N immobilization amounted to 31.9 and 28.2 mg N g-1 added C after 14 days for wheat straw and sunflower stalks, respectively. At the end of the incubation, about 35% of the newly immobilized N was remineralized in both plant residue treatments. Gross N immobilization plotted against decomposed C suggests that fairly uniform C-N relationships exist during the decomposition of divers C substrates. The results demonstrate that low fertilizer N use efficiencies may be expected in a wheat-sunflower cropping system with incorporation of crop residues, as the fertilizer N applied becomes largely immobilized in the soil organic fraction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Nitrogen balance studies were made on rice (Oryza sativa) grown in flooded soil in pots. A low rate of fertilizer (5.64 mg N. kg−1 soil) did not depress the N gain, but a high rate (99.72 mg N. kg−1 soil) elminated the N gain. Soil N loss was negligible since15N applied as ammonium sulfate and thoroughly mixed with the soil was recovered from the soil-plant system after 3 crops. The observed N gain, therefore, was caused by N2-fixation, not by a reduction of soil N loss. Straw enhanced N gain at the rate of 2–4 mg per g straw. However, this gain was not observed when soil N availability was high. Dry fallow between rice crops decreased the N gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号