首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary The extractive powers of different extraction procedures (Electro-Ultrafiltration, 0.01M CaCl2 and standard Dutch methods) were compared mutually for a limited number of nutrients in soil samples from 21 locations. The results showed that for almost all parameters under study (Na, K, Mg, Mn, P, N) the methods are interchangeable. Drawbacks of the EUF technique are lower reproducibility of the results, laboriousness and high cost. Moreover, the extraction of exchangeable forms of Mn and Mg with this technique was incomplete. Extraction with 0.01M CaCl2 seems recommendable due to the simplicity of the analytical procedure giving sufficient information for practical soil-analytical purposes.  相似文献   

2.
Summary Studies were conducted in 22 non-calcareous soils (India) to evaluate various extractants,viz. (6N HCl, 0.1N HCl, EDTA (NH4)2CO3, EDTA NH4OAc, DTPA+CaCl2 and 1M MgCl2) to find critical levels of soil and plant Zn for green gram (Phaseolus aureus Roxb.). The order of extractability by the different extractants was 6N HCl>0.1N HCl>EDTA (NH4)2CO3<EDTA NH4OAc DTPA+CaCl2>1M MgCl2. Critical levels of 0.48 ppm DTPA × CaCl2 extractable Zn, 0.80 ppm EDTA NH4OAc extractable Zn, 0.70 ppm EDTA (NH4)2CO3 extractable Zn, and 2.2 ppm 0.1N HCl extractable Zn were estimated for the soils tested. The critical Zn concentration in 6 weeks old plants was found to be 19 ppm. The 0.1N HCl method gave the best correlation (r=0.588**) between extractable Zn and Bray's per cent yield, while with DTPA+CaCl2, it was slightly low (r=0.542**). The DTPA + CaCl2 method gave significant (r=0.73**) correlation with plant Zn concentration. The 0.1N HCl gave the higher correlation with Zn uptake (r=0.661**) than DTPA (r=0.634**) 6N HCl and 1M MgCl2 method gave nonsignificant positive relationship with Bray's per cent yield. For noncalcareous soils apart from the common use of DTPA+CaCl2, 0.1N HCl can also be used for predicting soil available Zn. The use of 0.1N HCl would be much cheaper than DTPA and other extractants used in the study.  相似文献   

3.
An experiment was conducted at EMBRAPA/CNPAF, Goiânia, Goias, Brazil, on a typic haplustox soil to evaluate growth and N2 fixation-related parameters of Phaseolus vulgaris L. Bean lines, which had been selected for N2 fixation at CNPAF, including production cultivars, germplasm bank entries, and parents and progenies of a cross made to improve this characteristic. Wheat (Triticum aestivum L.) and dwarf sorghum (Sorghum bicolor (L.) Moench) were evaluated as non-N2-fixing reference crops for difference method (DM) and 15N isotope dilution technique (IDT) estimates of N2 fixation. IDT estimates ranges from 4 to 18 kg N2 fixed ha-1. High variability associated with low levels of N2 fixation precluded definitive identification of the best N2 fixing bean lines. Due to differences in growth cycle and in patterns and amounts of soil N uptake during the season, neither of the reference crops tested appears to be an adequate control for either DM or IDT estimates of N2 fixation. However, ranking of lines for effectiveness in N2 fixation could be performed without the use of any reference crops.  相似文献   

4.
The effects of soil acidity on the growth and N2-fixing activity of white clover in seven acid topsoils and subsoils of New Zealand were investigated using a glasshouse experiment.The application of phosphate (Ca(H2PO4)2) to the soils resulted in very large increases in white clover growth on all soils. The application of phosphate, as well as increasing P supply, also decreased 0.02M CaCl2-extractable Al levels, but had little effect on exchangeable Al levels.Where adequate phosphate was applied, increasing rates of lime (CaCO3) resulted in increased plant growth on most soils. N2[C2H2]-fixing activity was increased by the first level of lime for one soil, but generally remained approximately constant or declined slightly at higher rates of lime. Up to the point of maximum yield, white clover top weight was more highly correlated with 0.02M CaCl2-extractable soil Al than with exchangeable Al or pH. At pH values greater than 5.5, plant yield declined on some soils, apparently because of Zn deficiency. The data suggest that white clover is unlikely to be affected by Al toxicity at 0.02M CaCl2-extractable Al levels of less than about 3.3 g g–1. However, there were differences between soils in apparent plant tolerance to 0.02M CaCl2-extractable Al, which appeared to be caused by differing C levels in the 0.02M CaCl2 extracts.  相似文献   

5.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

6.
Cultivating dinitrogen-fixing legume trees with crops in agroforestry is a relatively common N management practice in the Neotropics. The objective of this study was to assess the N2 fixation potential of three important Neotropical agroforestry tree species, Erythrina poeppigiana, Erythrina fusca, and Inga edulis, under semi-controlled field conditions. The study was conducted in the humid tropical climate of the Caribbean coastal plain of Costa Rica. In 2002, seedlings of I. edulis and Vochysia guatemalensis were planted in one-meter-deep open-ended plastic cylinders buried in soil within hedgerows of the same species. Overall tree spacing was 1 × 4 m to simulate a typical alley-cropping design. The 15N was applied as (NH4)2SO4 at 10% 15N atom excess 15 days after planting at the rate of 20 kg [N] ha−1. In 2003, seedlings of E. poeppigiana, E. fusca, and V. guatemalensis were planted in the same field using the existing cylinders. The 15N application was repeated at the rate of 20 kg [N] ha−1 15 days after planting and 10 kg [N] ha−1 was added three months after planting. Trees were harvested 9 months after planting in both years. The 15N content of leaves, branches, stems, and roots was determined by mass spectrometry. The percentage of atmospheric N fixed out of total N (%Nf) was calculated based on 15N atom excess in leaves or total biomass. The difference between the two calculation methods was insignificant for all species. Sixty percent of I. edulis trees fixed N2; %Nf was 57% for the N2-fixing trees. Biomass production and N yield were similar in N2-fixing and non-N2-fixing I. edulis. No obvious cause was found for why not all I. edulis trees fixed N2. All E. poeppigiana and E. fusca trees fixed N2; %Nf was ca. 59% and 64%, respectively. These data were extrapolated to typical agroforestry systems using published data on N recycling by the studied species. Inga edulis may recycle ca. 100 kg ha−1 a−1 of N fixed from atmosphere to soil if only 60% of trees fix N2, E. poeppigiana 60–160 kg ha−1 a−1, and E. fusca ca. 80 kg ha−1 a−1.  相似文献   

7.
Increase in solubility of soil aluminium (Al) as a result of root-induced decrease of soil pH was studied. Soil samples of known distances from the roots of NH4-N fertilized Ryegrass were analyzed for pH and aluminium extractable with 0.01 M CaCl2. Results showed that though no Al was found in bulk soil (pH 6.8), its concentration in the vicinity of roots increased to 0.023 mM with a concomitant decrease of soil pH from 6.8 to 4.4.  相似文献   

8.
N fertilizer recommendatons are based on the Nmin content in the useable soil layer. However, for spinach, information from the literature differs for both depth of useable soil layer and N fertilizer recommendations. The objectives of these experiments were to study the importance of different soil zones for N supply to spinach and to kohlrabi, and to examine the relationship between N supply in the useable soil layer and yield of spinach. Field experiments with both crops showed that about 80% of total root length was in the upper 0–15 cm soil layer and less than 5% below 30 cm. Spinach roots were present in the 15–30 cm layer only during the last 2 weeks before harvest, whereas kohlrabi roots penetrated this layer already 4 weeks before harvest. Placement of NO3 below 30 cm depth did not influence root distribution. The top layer contributed about 80% to total N uptake for both crops. The 15–30 cm soil layer can maximally contribute 40–50 kg N ha-1. It is concluded that N fertilizer recommendations for both crops should be based on the Nmin content of the 0–30 cm soil layer. Maximum yield of spinach (300 dt f.m. ha-1) was obtained at 150 kg N supply ha-1. The nitrate residue was 50 kg N ha-1 at 0–30 cm in this treatment. It is argued that the nitrate residues at harvest could be decreased by delaying the harvest for a few days, at slightly suboptimal N supply.  相似文献   

9.
Summary Nitrogen balance studies were made on rice (Oryza sativa) grown in flooded soil in pots. A low rate of fertilizer (5.64 mg N. kg−1 soil) did not depress the N gain, but a high rate (99.72 mg N. kg−1 soil) elminated the N gain. Soil N loss was negligible since15N applied as ammonium sulfate and thoroughly mixed with the soil was recovered from the soil-plant system after 3 crops. The observed N gain, therefore, was caused by N2-fixation, not by a reduction of soil N loss. Straw enhanced N gain at the rate of 2–4 mg per g straw. However, this gain was not observed when soil N availability was high. Dry fallow between rice crops decreased the N gain.  相似文献   

10.
Nitrogen fixation associated with non-legumes in agriculture   总被引:1,自引:0,他引:1  
P. J. Dart 《Plant and Soil》1986,90(1-3):303-334
Summary This review examines the nitrogen cycle in upland agricultural situations where nonlegume N2-fixation is likely to be important for crop growth. Evidence for associative fixation is adduced from accumulation of N in the top 15 cm soil under grasses, from N balances for crop production obtained from both pot and field experiments, in tropical and temperate environments, measurements of nitrogen (C2H2 reduction) activity, uptake of15N2 by plants and15N isotope dilution. Factors influencing the activity such as the provision of carbon substrate by the plant and the efficiency of its utilisation by the bacteria, plant cultivar, soil moisture and N levels, and inoculation with N2-fixing bacteria are discussed. Crop responses to inoculation withAzospirillum are detailed. The breakdown of crop residues, particularly straw, can support large levels of N2-fixation. Cyanobacteria as crusts on the soil surface also fix nitrogen actively in many environments. Fixation by the nodulated, non-legume treesCasuarina andParasponia has beneficial effects in some cropping systems in Asia. I conclude that nonlegume N2-fixation makes a significant contribution to the production of some major cereal crops in both temperate and tropical environments.  相似文献   

11.
Glendining  M.J.  Poulton  P.R.  Powlson  D.S.  Macdonald  A.J.  Jenkinson  D.S. 《Plant and Soil》2001,233(2):231-239
In an earlier paper we presented data from an experiment in which nitrogen-15-labelled fertilizer was applied in spring to barley on the Rothamsted long-term Spring Barley Experiment, at rates of 48, 96 or 144 kg N ha–1. A substantial proportion (between 28 and 39%) of this 15N remained in the soil (0–70 cm) and stubble at harvest, mostly in organic form. The present paper follows the fate of this `residual' 15N over the following 2 years. Small amounts of `residual' 15N were recovered in the following two spring barley crops; 8% in the first and 3% in the second. The overall loss of `residual' 15N (i.e. `residual' 15N not recovered in crops and soil to a depth of 70 cm) over the 2 years was 23%. This is equivalent to just 8% of the total 15N originally applied. There was surprisingly little difference in the behaviour of the `residual' 15N in soils containing very different quantities of soil organic matter.  相似文献   

12.
稻田土壤-作物-家畜系统中氮的循环研究   总被引:1,自引:0,他引:1  
何电源  廖先苓 《生态学报》1994,14(2):113-120
本文用N^15标记水稻和绿肥研究了稻田土壤-作物-家畜系统中氮的循环。N^15标记稻草喂羊,羊体回收饲料稻草N31.16%,羊粪28.26%,羊尿5.72%,总回收65.14%,损失34.86%。将羊粪尿单施,稻谷回收饲料稻草N3.19%,水稻全株回收4.82%,水稻全株回收4.82%,土壤残留19.00%,损失10.14%。故羊体,水稻及土壤残留共回收饲料稻草N54.98%。将羊粪与尿素配施,则  相似文献   

13.
Summary Two soil extracts used for chemical indexes for N availability, 0.01M NaHCO3 and boiling 0.01M CaCl2, were analyzed in effort to learn more about the nature of the extracted organic matter (O.M.). The two extracts appeared to remove different fractions of the soil O.M. A study of five soils showed that the C/N value of the NaHCO3 extract (following decarbonation) was significantly higher than that of the total soil O.M.; while the C/N value in the boiling CaCl2 extract was not significantly different from that in the soil O.M. There was also significant variation in C/N values among soils for the boiling CaCl2 extract. The extracts of three soils were analyzed for apparent molecular weight distribution using gel filtration and the results compared to those for base-extracted humic substances. Almost all the molecules in the extracts had apparent molecular weights less than 21,000 daltons while 21 to 47% of the humic substances from the same soils (extracted with 0.5M NaOH) had molecular weights greater than 21,000 daltons. In the boiling CaCl2 extract, 78 to 87% of the humic substances had apparent molecular weights less than 1,000 daltons, whereas with the NaHCO3 extract, 42 to 83% of the humic substances were in the 1,000 to 21,000 dalton range. Forty-three to 92% of the N extracted by the NaHCO3 was in protein form, and 8 to 30% was ninhydrin-detectable. In the boiling CaCl2 extract 25 to 30% of the extracted N was ninhydrin-detectable. For the same 10 soils, ninhydrin-detectable N values of the boiling CaCl2 extract appeared closely related to greenhouse and field relative N uptake, while the ninhydrin-detectable N values of the NaHCO3 extract appeared unrelated to both. The protein N and protein in plus ninhydrin-detectable N values of the NaHCO3 extract were closely related to greenhouse relative N uptake only. The results of this study indicated that specific fractions of the soil O.M. were being extracted by the two solutions and that significant differences existed in the chemical nature of the two extracts. Paper No. 6175 of the J. Ser. of the Pennsylvania Agric. Exp. Stn. Authorized for publication Jan. 26, 1981.  相似文献   

14.
Summary The effects of NaCl and CaCl2 on shoot regeneration from quince (Cydonia oblonga BA L29 clone) leaves were investigated. Caulogenesis was induced on in vitro-grown leaves treated for 2d in liquid Murashige and Skoog (MS) medium with 11.3 μM 2,4-dichlorophenoxyacetic acid and cultured on MS gelled medium supplemented with 4.5 μM thidiazuron and 0.5 μM naphthaleneacetic acid. Three experiments were performed: in the first, we compared the effects of NaCl at 0, 25, 50, 100, and 200 mM in factorial combination with 3, 9, and 27 mM CaCl2. In the second, NaCl was tested at 0, 5, 10, 20, 40, and 80 mM with CaCl2 at 0.3, 1.0, and 3.0 mM. The third experiment was carried out with the same experimental design as the second one but replacing NaCl with Na2SO4. Shoot regeneration was evaluated after 50 d of culturing: 25 in darkness and 25 in white light. In the first experiment, shoot regeneration was very poor and was observed only at the lower salt concentrations. In the second experiment, the percentages of caulogenic leaves were much higher, but decreased with increasing NaCl concentration. The more pronounced negative effect of the highest NaCl concentrations appeared to be partly mitigated by CaCl2 at 1 and 3 mM. The presence of 3 mM CaCl2, in the experiment with Na2SO4, appeared to be even more effective in reducing the adverse effect of sodium stress on caulogenesis. This result was attributed to the lower Cl concentration in the growth medium, which resulted from replacing NaCl with Na2SO4. NaCl applied at low concentrations (5 and 10 mM) in combination with 3 mM CaCl2 exerted a favorable effect on adventitious shoot regeneration. As regards the Na+ and Ca2+ interaction, when the Na+/Ca2+ ratio was below roughly 35 and 20, with NaCl and Na2SO4, respectively, at least 60% of leaves showed regenerating capacity, but optimal values of this ratio were not derived.  相似文献   

15.
Vos  J.  van der Putten  P.E.L. 《Plant and Soil》2001,236(2):263-273
In temperate climates with a precipitation surplus during autumn and winter, nitrogen (N) catch crops can help to reduce nitrogen losses from cropping systems by absorbing nitrogen from the soil and transfer it to a following main crop. In two field experiments the catch crop species winter rye (Secale cereale) and forage rape (Brassica napus ssp. oleifera (Metzg.) Sinsk) or oil radish (Raphanus sativus spp. oleiferus (DC.) Metzg.) were planted end of August and 3 weeks later with a non-limiting supply of N and zero-N controls. In the next spring catch crops were incorporated into the soil. In Expt 1, N transfer was measured as (i) the N uptake of a potato test crop, grown with zero and 12.5 g m–2 N applied, and (ii) the increase in soil mineral N (0–30 cm) in uncropped soil covered with polythene film. In Expt 2, N transfer was measured as the increase in soil mineral N in covered cylinders placed in uncropped soil (in situ incubation). Subsidiary laboratory incubations were performed in Expt 2. In Expt 1, the apparent recovery in potato of fertilizer N (R f) was 0.56. The recovery in potato of N mineralized from 'native' N pools other than catch crop material (R n) ranged from 0.43 to 0.51, depending on the value assumed for the depth of N extraction by potato roots. The average recovery in potato of incorporated catch crop N (R c) was 0.34. Expressed as `fertilizer N replacement factor' (F r) the latter was 0.61 (i.e. 1 kg of N in catch crop material counts for 0.61 kg fertilizer N). Under the film in Expt 1 the fraction net mineralization of incorporated catch crop N (M n) was 0.36 on August 11 and 0.43 on October 18. In Expt 2, the average value of M n was 0.31, which was lower than in Expt 1 and probably associated with the drier soil in Expt 2. In the laboratory incubations (20°C) M n showed values up to 0.54 after 84 days with the largest rates of change in mineralization occuring early after the start of the incubation. In conjunction with literature data it is concluded that cultivation of nitrogen catch crops shows promise as a means to reduce N input and N losses in temperate climates with wet winters.  相似文献   

16.
Summary The 15N/14N ratios of plant and soil samples from Northern California ecosystems were determined by mass spectrometry. The 15N abundance of 176 plant foliar samples averaged 0.0008 atom % 15N excess relative to atmospheric N2 and ranged from-0.0028 to 0.0064 atom % 15N excess relative to atmospheric N2. Foliage from reported N2-fixing species had significantly lower mean 15N abundance (relative to atmospheric N2 and total soil N) and significantly higher N concentration (% N dry wt.) than did presumed non-N2-fixing plants growing on the same sites. The mean difference between N2-fixing species and other plants was 0.0007 atom % 15N. N2-fixing species had lower 15N abundance than the other plants on most sites examined despite large differences between sites in vegetation, soil, and climate. The mean 15N abundance of N2-fixing plants varied little between sites and was close to that of atmospheric N2. The 15N abundance of presumed non-N2-fixing species was highest at coastal sites and may reflect an input of marine spray N having relatively high 15N abundance. The 15N abundance of N2-fixing species was not related to growth form but was for other plants. Annual herbaceous plants had highest 15N abundance followed in decreasing order by perennial herbs, shrubs, and trees. Several terrestrial ferns (Pteridaceae) had 15N abundances comparable to N2-fixing legumes suggesting N2-fixation by these ferns. On sites where the 15N abundance of soil N differs from that of the atmosphere, N2-fixing plants can be identified by the natural 15N abundance of their foliage. This approach can be useful in detecting and perhaps measuring N2-fixation on sites where direct recovery of nodules is not possible.  相似文献   

17.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

18.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

19.
The response of pericarp disks from ripening tomato (Lycopersicon esculentum Mill. cv. Traveler‘76) to CaCl2, additions was studied to determine the effect of Ca2+ on ethylene and CO2 production. Application of 5 mM CaCl2 resulted in a 2, 20, 33, 39, and 50% increase in ethylene production in disks obtained from preclimacteric minimum, climacteric rise, climacteric peak, one, and two days postclimacteric fruit, respectively. CaCl2 concentrations of 10 and 50 mM gave no additional stimulation of ethylene production; CO2 production at 5 mM CaCl2 was not different from controls, but is increased at 10 and 50mM CaCl2. CaCl2 also increased ethylene production in disks treated with 1-aminocyclopropane-1-carboxylic acid (ACC) or aminoethoxy-vinylglycine. Chloride salts of K+, Na+, Mg2+, Sr2+ and La3+ did not stimulate ethylene production. SrCl2 stimulated ethylene production to a lesser degree than CaCl2. Disks from potato (Solanum tuberosum L. cv. Katahdin) tubers produced greater quantities of ethylene and ACC when 5 mM CaCl2 was included in the incubation medium (K. B. Evensen, 1983. Physiol. Plant. 60:125–128). Ca2+-treated disks had more than three times as much ACC synthase activity as control disks after 18 to 24 h incubation, when ethylene and ACC were maximal. The apparent Km for S-adenosylmethionine was 13 μM at 29°C, pH 8.0 in extracts from both Ca2+-treated and control disks. Inclusion of 1 to 50 mM CaCl2 in the assay medium did not significantly affect enzyme activity. ACC synthase extracted from control and Ca2+-treated disks had a pH optimum of 8.5 and an apparent molecular weight of 72 kdalton, estimated by gel filtration. It is likely that the presence of Ca2+ in the buffer allows greater synthesis of ACC synthase as part of the wound-healing response in potato, while in tomato the predominant effect is on membrane stabilization.  相似文献   

20.
Cadmium, copper, and lead were extracted from suspensions of contaminated soils using metal chelating exchange resin membranes. Nine soils with widely varying properties and Cd, Cu and Pb levels were tested. Soil suspensions made up with 4 g in 40 mL deionized water were equilibrated with 5 cm2 Ca-saturated Chelex exchange resin membrane which was retained inside a polypropylene bag and shaken at 150 rpm for 24 hrs. Resin membrane extractable Cd, Cu and Pb of the soils were correlated with Cd, Cu, and Pb uptake by young wheat seedlings grown in these soils and compared with soil Cd, Cu, and Pb extracted by 0.1 M HCl, 0.01 M CaCl2, and 0.005 M Diethylenetriamine pentaacetic acid (DTPA). The amounts of Cd, Cu and Pb extracted by the Ca-saturated Chelex membrane from all tested soils correlated well with those absorbed by young wheat seedlings. The Ca-saturated Chelex membrane extractable Cd, Cu and Pb of the soil had the strongest correlation with plant uptake Cd, Cu and Pb among the extraction methods we tested. It was demonstrated that the Ca-saturated Chelex membrane extraction is an appropriate method in simultaneously estimating Cd, Cu and Pb phytoavailability of soil and is applicable to a wide range of soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号