首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
封面说明     
《遗传》2021,(1)
正钾离子通道在心肌细胞动作电位复极过程中起着重要作用。钾离子通道种类繁多,已知钾离子通道蛋白KCNQ和HERG/eag参与心脏动作电位的形成,调节心脏收缩节律。钾离子通道蛋白Shaker是果蝇(Drosophila)体内发现的第一个电压门控钾离子通道,维持神经元和肌肉细胞的电兴奋性,但是目前在成体心脏中的功能仍不清楚。本期刘学文等"钾离子通道蛋白Shaker对果蝇心脏衰老的保护作用"一文以果蝇为模型,  相似文献   

2.
帕金森病(PD)是以黑质致密部多巴胺神经元选择性减少和胞浆内路易小体的形成为特征的神经退行性疾病。研究发现,PTEN诱导激酶1(PINK1)基因突变导致家族性早发型帕金森病的发生。在转基因果蝇中,PINK1功能丢失导致间接飞行肌缺陷,线粒体结构、功能障碍,多巴胺神经元丢失。本研究在PINK1突变PD转基因果蝇中,进行发动蛋白相关蛋白1(Drp1)过表达和敲低,探索Drp1对PD转基因果蝇的保护作用及其可能机制。本研究选用MHC-Gal4/UAS系统的PD转基因果蝇模型,特异性启动PINK1B9基因于果蝇肌肉组织中表达;运用Drp1基因过表达和RNA干扰干预PINK1B9转基因果蝇,研究其对PD转基因果蝇的作用。结果显示,不论过表达Drp1还是Drp1敲低均可挽救PINK1突变转基因果蝇,降低翅膀异常率,改善飞行能力,恢复间接飞行肌排列,调节线粒体形态,提高ATP生成量,上调NDUFS3蛋白表达水平。本文结果提示,Drp1的调控挽救PINK1突变转基因果蝇与线粒体呼吸链有关。  相似文献   

3.
离子通道蛋白作为神经系统的重要组成部分,在早期神经细胞发育中的作用却没有被研究过。基于神经发育在果蝇与小鼠间的保守性,果蝇幼虫大脑视觉中心可作为很好的模型来筛选参与神经干细胞行为调节的基因。文章通过体内RNA干扰和失活突变体来研究重要的钙离子通道和钾离子通道蛋白对神经干细胞的调节作用。结果表明,这些蛋白表达水平降低和shaker蛋白完全失活均对果蝇幼虫大脑神经干细胞的发育无影响。  相似文献   

4.
钾(K)是植物生长发育必不可少的三大营养元素之一,在调节酶活性、膜电位、细胞内稳态和确保蛋白质稳定合成的过程中发挥重要作用。植物主要通过钾离子通道及转运蛋白介导钾离子的吸收与转运。近年来,已经分离出不同类型的钾离子通道,其中最早被发现并深入研究的钾离子通道是Shaker钾离子通道。综述了植物钾离子通道以及其分类、Shaker钾离子通道的结构特征、AKT1影响植物的生长发育、AKT1在非生物胁迫和生物胁迫中的功能和钾离子通道AKT1其中的两种调控机制,通过CBL/CIPK的磷酸化和异源聚合进行内部调控,并展望了钾离子通道AKT1后续有待研究的问题。  相似文献   

5.
射精球蛋白EBP主要由射精管释放,是果蝇精液的重要组成部分。但是,EBP的具体作用机制及其在果蝇其它生命活动中的功能仍不清楚。本文检测了果蝇Ebp和EbpII基因在不同发育阶段以及成虫精巢与卵巢中的表达水平。结果发现,Ebp和EbpII基因在成虫中的表达水平显著高于其它发育阶段的果蝇,且它们在精巢中的表达显著高于卵巢。生物信息学分析表明,EBP和EBPⅡ蛋白仅包含若干低复杂区域,不含特殊的结构域,且它们的理化性质存在差异。在精细胞中特异性敲降Ebp后,果蝇储精囊中缺乏成熟的精子,但敲降EbpII后精巢没有显著的表型变化。TUNEL实验结果显示,在精细胞和生殖干细胞中特异性敲降Ebp的表达均能引起精子束的异常凋亡。由此,推测Ebp基因参与果蝇精子发生过程,并在维持精细胞存活过程中起关键作用。  相似文献   

6.
为鉴定新的参与黑腹果蝇(Drosophila melanogaster)天然免疫信号通路调控的分子及作用机制,应用果蝇的Gal4/UAS系统敲低54个蛋白质激酶编码基因,分别利用革兰氏阳性菌(Enterococcus faecalis, E.faecalis)或革兰氏阴性菌(Erwinia carototovovora carototovovora 15, Ecc15)感染基因敲低果蝇,筛选参与果蝇天然免疫反应的蛋白质激酶。结果显示,全身性敲低蛋白质激酶Pitslre的果蝇感染E.faecalis或Ecc15 后,生存率降低,半致死时间LT50分别降低为对照组的66.7%和28.6%。相应的,Pitslre功能缺失导致革兰氏阳性菌和阴性菌分别感染后,Toll及IMD通路下游抗菌肽Drosomycin和Diptercin表达水平明显下降。在脂肪体和血淋巴细胞中特异性敲低Pitslre基因,导致革兰氏阳性菌及阴性菌感染后的果蝇半致死时间LT50分别缩短75%和90%,细菌载量分别升高约10倍。在果蝇S2细胞中,敲低Pitslre基因,导致细胞的抗菌肽Drosomycin、Attacin和Diptercin表达水平分别降低约50%。此外,通过免疫共沉淀实验检测Pitslre与预测存在相互作用的蛋白质TSC1、Rcd5和pbl之间的相互作用。综上所述,蛋白质激酶Pitslre参与果蝇天然免疫反应,在正向调控果蝇天然免疫Toll和IMD通路中发挥重要作用。  相似文献   

7.
黑腹果蝇(Drosophila melanogaster)的心脏发育调控基因与人类的相关基因具有高度同源性。Lbe基因是果蝇心脏发育的重要调控基因。为了深入研究Lbe基因在心脏发育中的调控功能,采用DNA免疫技术制备了抗果蝇Lbe蛋白的多克隆抗体。通过PCR扩增Lbe基因序列,将该序列与真核表达载体pCAGGS-P7同源重组,以该同源重组载体免疫4周龄小鼠,获得含有抗Lbe多克隆抗体的血清。蛋白质印迹(Western blot)和胚胎抗体染色结果表明,该抗体的特异性较好。该抗体为随后的Lbe功能的研究奠定了基础。  相似文献   

8.
电刺激是人工控制心脏搏动频率的标准技术,但在实验研究中,这种方法有较大的局限性,如局部电解效应、刺激频率和时长受限、只能对目标范围内的所有细胞进行刺激、不能选择性作用于心肌细胞等。基于光遗传学技术,本研究构建了心肌细胞特异性表达光激活阳离子通道channelrhodopsin-2(ChR2)的转基因小鼠,采用特定频率的蓝光刺激使心肌细胞膜电位去极化,从而引发动作电位并控制心脏起搏。当蓝光刺激频率低于小鼠自发心脏搏动频率时,蓝光刺激造成暂时性的心律失常,去除蓝光照射后小鼠心跳恢复正常;当蓝光刺激频率高于小鼠自发心跳频率时,小鼠的心脏搏动完全由蓝光刺激支配,去除蓝光照射后恢复到自发搏动状态;失去自主搏动能力的小鼠心脏也可由蓝光刺激进行起搏;不表达ChR2的对照小鼠对蓝光刺激没有响应。本研究对基于光遗传学的光控心脏起搏技术进行了实验论证,在心肌电生理学特别是心律失常研究中有着非常重要的应用价值。  相似文献   

9.
为鉴定新的参与黑腹果蝇(Drosophila melanogaster)天然免疫信号通路调控的分子及作用机制,应用果蝇的Gal4/UAS系统敲低54个蛋白质激酶编码基因,分别利用革兰氏阳性菌(Enterococcus faecalis, E.faecalis)或革兰氏阴性菌(Erwinia carototovovora carototovovora 15, Ecc15)感染基因敲低果蝇,筛选参与果蝇天然免疫反应的蛋白质激酶。结果显示,全身性敲低蛋白质激酶Pitslre的果蝇感染E.faecalis或Ecc15 后,生存率降低,半致死时间LT50分别降低为对照组的66.7%和28.6%。相应的,Pitslre功能缺失导致革兰氏阳性菌和阴性菌分别感染后,Toll及IMD通路下游抗菌肽Drosomycin和Diptercin表达水平明显下降。在脂肪体和血淋巴细胞中特异性敲低Pitslre基因,导致革兰氏阳性菌及阴性菌感染后的果蝇半致死时间LT50分别缩短75%和90%,细菌载量分别升高约10倍。在果蝇S2细胞中,敲低Pitslre基因,导致细胞的抗菌肽Drosomycin、Attacin和Diptercin表达水平分别降低约50%。此外,通过免疫共沉淀实验检测Pitslre与预测存在相互作用的蛋白质TSC1、Rcd5和pbl之间的相互作用。综上所述,蛋白质激酶Pitslre参与果蝇天然免疫反应,在正向调控果蝇天然免疫Toll和IMD通路中发挥重要作用。  相似文献   

10.
《生命科学研究》2016,(1):57-62
Wg/Wnt信号参与调控多种组织的发育,尤其在心脏发育和心脏衰老过程中发挥重要的作用。pygo作为Wnt信号途径的一个新成员,可能依赖于Wnt信号调控心脏发育,而最新发现pygo敲低品系引起的成体心脏功能缺陷与Wnt信号缺失在心脏中的表型具有显著性差异,表明pygo调控成体心脏功能不依赖于经典Wnt信号,可能存在新的调控机制。主要对pygo基因在调控心脏发育和心脏衰老中的功能以及在果蝇和哺乳动物中pygo基因调控心脏功能分子机制的研究进展进行了综述。虽然pygo不依赖经典Wnt信号在成体心脏中发挥作用,但显性负抑制TCF突变体引起严重的成体心脏生理功能缺陷,与pygo表型一致,暗示着pygo可能依赖与TCF类似因子相互作用发挥功能。其次,pygo能跨越TCF或Lgs直接与Wnt信号靶基因相互作用。此外,Pygo蛋白能与Lgs相互作用形成Pygo-BCL9/Lgs-H3K4me复合物调节Wnt信号靶基因,且甲基转移酶HMT核心组件WDR5与Pygo蛋白的相互作用能促进PHD结构域与H3K4的结合,表明pygo调节成体心脏功能与表观遗传学修饰也具有一定的相关性。  相似文献   

11.
A Baumann  A Grupe  A Ackermann    O Pongs 《The EMBO journal》1988,7(8):2457-2463
Voltage-sensitive potassium channels are found in vertebrate and invertebrate central nervous systems. We have isolated a rat brain cDNA by cross-hybridization with a probe of the Drosophila Shaker gene complex. Structural conservation of domains of the deduced protein indicate that the rat brain cDNA encodes a voltage-sensitive potassium channel. Of the deduced amino acid sequence, 82% is homologous to the Drosophila Shaker protein indicating that voltage-sensitive potassium channels have been highly conserved during evolution. Selective pressure was highest on sequences facing the intracellular side and on proposed transmembrane segments S4-S6, suggesting that these domains are crucial for voltage-dependent potassium channel function. The corresponding rat mRNA apparently belongs to a family of mRNA molecules which are preferentially expressed in the central nervous system.  相似文献   

12.
In the last 4 years, the molecular identity of several types of voltage-dependent potassium channels has been discovered. These include channels that terminate action potentials and control repetitive neuronal firing, as well as channels whose biological role is not yet understood. The majority of these are encoded by genes related to the Drosophila Shaker gene. The large number of genes comprising the Shaker gene family, coupled with the existence of different channels that result from alternatively spliced messages from the same gene, provide both vertebrates and invertebrates with a wide selection of channels whose voltage-dependence and kinetics can be tailored to the needs of a specific cell. Mutagenesis experiments on such channels are providing new information on those regions of the protein that govern essential aspects of channel activity, such as gating by voltage and ion permeation. Another gene, unrelated to the Shaker family, encodes a voltage-dependent potassium channel that activates much more slowly than the Shaker channels. This has been termed the MinK channel.  相似文献   

13.
Voltage-gated potassium channels control the membrane potential of excitable cells. To understand their function, knowledge of their structure is essential. However, these channels are scarce in natural sources, and overexpression is necessary to generate material for structural studies. We have compared functional expression of the Drosophila Shaker H4 potassium channel in stable insect cell lines and in baculovirus-infected insect cells, using three different baculovirus promoters. Stable insect cell lines expressed correctly assembled channel, which was glycosylated and found predominantly at, or close to, the cell surface. In comparison, the majority of baculovirus-overexpressed Shaker was intracellular and incorrectly assembled. The proportion of functional Shaker increased, however, if the weaker basic protein promoter was used rather than the stronger p10 or polyhedrin promoters. In addition, co-expression of the molecular chaperone, calnexin, increased the quantity of correctly assembled channel protein, suggesting that calnexin can be used to increase the efficiency of channel expression in insect cells.  相似文献   

14.
UNC-45 is a UCS (UNC-45/CRO1/She4P) class chaperone necessary for myosin folding and/or accumulation, but its requirement for maintaining cardiac contractility has not been explored. Given the prevalence of myosin mutations in eliciting cardiomyopathy, chaperones like UNC-45 are likely to be equally critical in provoking or modulating myosin-associated cardiomyopathy. Here, we used the Drosophila heart model to examine its role in cardiac physiology, in conjunction with RNAi-mediated gene silencing specifically in the heart in vivo. Analysis of cardiac physiology was carried out using high-speed video recording in conjunction with movement analysis algorithms. unc-45 knockdown resulted in severely compromised cardiac function in adults as evidenced by prolonged diastolic and systolic intervals, and increased incidence of arrhythmias and extreme dilation; the latter was accompanied by a significant reduction in muscle contractility. Structural analysis showed reduced myofibrils, myofibrillar disarray, and greatly decreased cardiac myosin accumulation. Cardiac unc-45 silencing also dramatically reduced life-span. In contrast, third instar larval and young pupal hearts showed mild cardiac abnormalities, as severe cardiac defects only developed during metamorphosis. Furthermore, cardiac unc-45 silencing in the adult heart (after metamorphosis) led to less severe phenotypes. This suggests that UNC-45 is mostly required for myosin accumulation/folding during remodeling of the forming adult heart. The cardiac defects, myosin deficit and decreased life-span in flies upon heart-specific unc-45 knockdown were significantly rescued by UNC-45 over-expression. Our results are the first to demonstrate a cardiac-specific requirement of a chaperone in Drosophila, suggestive of a critical role of UNC-45 in cardiomyopathies, including those associated with unfolded proteins in the failing human heart. The dilated cardiomyopathy phenotype associated with UNC-45 deficiency is mimicked by myosin knockdown suggesting that UNC-45 plays a crucial role in stabilizing myosin and possibly preventing human cardiomyopathies associated with functional deficiencies of myosin.  相似文献   

15.
Genomic recoding by A-->I RNA editing plays an important role in diversifying the proteins involved in electrical excitability. Here, we describe editing of an intronless potassium channel gene. A small region of human K(V)1.1 mRNA sequence directs efficient modification of one adenosine by human adenosine deaminase acting on RNA 2 (hADAR2). Mutational analysis shows that this region adopts a hairpin structure. Electrophysiological characterization reveals that the editing event (I/V) profoundly affects channel inactivation conferred by accessory beta subunits. Drosophila melanogaster Shaker channels, mimicking this editing event through mutation, exhibit a similar effect. In addition, we demonstrate that mRNAs for the paralogous D. melanogaster Shab potassium channel are edited at the same position by fly ADAR-a clear example of convergent evolution driven by adenosine deamination. These results suggest an ancient and key regulatory role for this residue in K(V) channels.  相似文献   

16.
The complete amino acid sequences of two potassium channel proteins from NG108-15 neuroblastoma-glioma hybrid cells have been deduced by cloning and sequencing the cDNAs. One of these proteins (NGK2) is structurally more closely related to the Drosophila Shaw gene product than to the Shaker and Shab gene products, whereas the other (NGK1) is identical with a rat brain potassium channel protein (BK2) which is more closely related to the Drosophila Shaker gene product. mRNAs derived from both the cloned cDNAs, when injected into Xenopus oocytes, direct the formation of functional potassium channels with properties of delayed rectifiers.  相似文献   

17.
The Shaker locus of Drosophila melanogaster encodes a family of A-type potassium channel subunits. Shaker mutants behave as antimorphs in gene dosage tests. This behaviour is due to the production of truncated A-channel subunits. We propose that they interfere with the function of their normal counterpart by forming multimeric A-channel structures. This hypothesis was tested by constructing transgenic flies carrying a heat-inducible gene encoding a truncated A-type potassium channel subunit together with a normal wild type doses of A-type potassium channel subunits. The altered subunit leads at larval, pupal or adult stages to the transformation of wild type into Shaker flies. The transformed flies exhibited a heat-inducible abnormal leg shaking behaviour and a heat-inducible facilitated neurotransmitter release at larval neuromuscular junctions. By the overexpression of an aberrant A-channel subunit the normal behaviour of transgenic D. melanogaster can be altered in a predictable way.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号