首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
胰岛素受体底物家族与Ⅱ型糖尿病   总被引:1,自引:0,他引:1  
胰岛素受体底物(insulin receptor substrate,IRS)家族是胰岛素/类胰岛素生长因子信号系统上游通路的关键介导者,在维持细胞生长、分裂和代谢中起着重要作用。已有四个成员被鉴定出:IRS-1、IRS-2、IRS-3和IRS-4,其中IRS-1和IRS-2在许多不同的组织细胞中起着特异性作用。IRS介导的胰岛素信号通路与很多其他信号通路存在交叉,它们能干扰胰岛素发挥效应,导致胰岛素抵抗,从而引发糖尿病。  相似文献   

2.
胰岛素抵抗是肥胖和2型糖尿病的主要表征。胰岛素信号通路根据是否需要胰岛素受体底物(insulin receptor substrate, IRS)介导可分为IRS介导和非IRS介导的信号通路,其中以IRS介导的信号通路为主。肥胖可增强炎性细胞因子表达并活化IKKβ/NF κB和JNK等炎症信号通路,抑制IRS酪氨酸磷酸化,从而阻止胰岛素的信号转导,降低胰岛素的敏感性,表现为胰岛素抵抗。泛素 蛋白酶体系统作为机体蛋白降解的主要途径,与胰岛素和炎症信号通路联系密切,一方面胰岛素信号通路的阻断可活化泛素依赖的蛋白降解,另一方面,泛素依赖的蛋白降解系统也可直接降解胰岛素和炎症信号通路的关键蛋白,影响胰岛素的作用。本文拟综述肥胖时,胰岛素信号通路、炎症相关信号通路和泛素 蛋白酶体系统之间的交互作用,在分子水平上探讨胰岛素抵抗的发生机制。  相似文献   

3.
胰岛素受体底物蛋白家族(insulin receptor substrate,IRS)具有衔接蛋白功能,可通过结合于跨膜受体而协调胞外信号向胞内的传递,进而激活PI3K/Akt和MAPK这两条经典的信号通路,从而调节细胞生长、增殖、代谢和存活等生物学过程。研究显示,IRS蛋白的表达水平或功能异常常与肿瘤、糖尿病和心血管疾病的发生发展密切相关。本文就IRS蛋白结构、在信号传导过程中的调控作用及其对肿瘤、糖尿病和心血管疾病发生发展的影响进行综述。  相似文献   

4.
支链氨基酸作为必需氨基酸,可用于合成含氮化合物,也可充当信号分子调节物质代谢。研究表明,支链氨基酸水平升高与胰岛素抵抗和2型糖尿病发生密切相关,其可通过激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路来影响胰岛素信号转导,还可通过损害脂质代谢和影响线粒体功能来调控胰岛素抵抗。此外,支链氨基酸分解代谢异常会导致代谢中间产物(如支链α-酮酸、3-羟基异丁酸和β-氨基异丁酸等)积累,其中支链α-酮酸和3-羟基异丁酸可通过影响胰岛素信号通路、损害脂质代谢等来诱发胰岛素抵抗,而β-氨基异丁酸可通过减少脂质积聚和炎症反应、增强脂肪酸氧化等来改善胰岛素抵抗。本文系统综述了支链氨基酸及其代谢中间产物对胰岛素抵抗的影响及调控机制,以期为胰岛素抵抗和2型糖尿病的防治提供新方向。  相似文献   

5.
PHIP是一种与胰腺β细胞中胰岛素受体底物(IRS)的PH结构域相互作用的蛋白。根据小鼠PHIP(mPHIP)mRNA翻译的不同起始位点,除全长的PHIP1外,mPHIP基因还编码其他3种不同变异体。在胰岛素诱导的信号途径中,主要分布于细胞核的PHIP1和IRS-1的PH结构域相互作用,介导IRS蛋白酪氨酸的磷酸化。IRS-2和PHIP1的共表达能诱导IRS在细胞膜上的定位,促进葡萄糖转运蛋白4(GLUT4)向细胞质膜的转移。PHIP1的表达能提高β-细胞内细胞周期蛋白D2的表达,促进β细胞的生长。PHIP1的表达活化蛋白激酶B(PKB),活化的PKB能明显抑制β细胞的凋亡。PHIP与胰岛素信号传导途径中其他信号分子的相互作用机制尚不明确。  相似文献   

6.
胰岛素受体底物(insulin receptor substrate,IRS)是胰岛素信号转导通路中一个极其重要的信号分子,对胰岛素信号级联效应具有至关重要的作用。目前有关胰岛素受体底物活性调节的研究主要集中在两个方面,一方面是磷酸化水平的调节机制,另一方面是细胞因子信号阻抑剂(suppressor of cytokine signaling,COCS)所介导的直接和间接调控。了解胰岛素受体底物活性调节机制将有助于进一步探索胰岛素抵抗和Ⅱ型糖尿病的发病机制。  相似文献   

7.
视黄醇结合蛋白4(Retinol binding protein 4,RBP4)是一种脂肪细胞分泌因子,其表达水平的升高与胰岛素抵抗及Ⅱ型糖尿病等疾病密切相关,但具体作用机制尚不清楚。为明确此机制,通过包装RBP4干扰慢病毒并侵染猪前体脂肪细胞。运用胰岛素激活及诱导胰岛素抵抗模型,利用QRT-PCR及Western blotting方法检测RBP4的干扰效率及处理组PI3K/Akt信号通路相关基因的表达。结果显示RBP4的基因及蛋白的干扰效率达到60%(P<0.01)以上。进一步研究发现在胰岛素诱导及胰岛素抵抗的情况下,LH1-shRBP4干扰后可显著提高胰岛素信号通路AKT2、PI3K、GLUT4和IRS1基因mRNA的表达;明显促进AKT2、PI3K和IRS1蛋白的磷酸化;提高AKT2、PI3K和GLUT4基因的总蛋白水平。总之,RBP4干扰通过上调PI3K/Akt胰岛素信号通路相关因子的表达及其磷酸化水平,提高了胰岛素敏感性。此研究将为胰岛素抵抗相关疾病的治疗提供新思路。  相似文献   

8.
目的:探讨micro RNA-185(miR-185)对高脂饮食的小鼠模型的HepG2肝细胞脂质代谢和胰岛素信号通路的调节作用。方法:应用定量反转录聚合酶链反应评估过表达或抑制miR-185表达脂质合成相关基因的mRNA水平。此外,应用Western Blot方法测定转染HepG2细胞pre-mir-185后的关键信号通路组分(IRS-1,IRS-2,PI3K、AKT2)和磷酸化PI3K和AKT2的表达情况。结果:诱导的人类HepG2细胞的软脂酸对mir-185水平的下降具有时间和剂量依赖性。经过mir-185转染的HepG2细胞显著降低脂肪酸合成酶,3-hydroxy-3-methylglutaryl-coa还原酶,固醇调节元件结合蛋白和固醇调节元件结合蛋白-1c的mRNA水平,而使用anti-mir-185寡核苷酸抑制mir-185在HepG2细胞中产生相反的作用。在高脂饮食的小鼠模型,与对照组动物相比,mir-185处理后脂质积累明显改善。mir-185诱导后通过上调胰岛素受体底物2增强胰岛素信号通路。结论:miR-185在体内和体外调节肝细胞脂肪酸代谢和胆固醇平衡,以及在改善胰岛素敏感性中起重要作用,miR-185可能成为非酒精性脂肪肝和胰岛素抵抗的新靶点和治疗非酒精性脂肪肝药物作用新靶标。  相似文献   

9.
通过高糖高脂饲料联合小剂量链脲佐菌素和去卵巢手术制备2型糖尿病合并骨质疏松大鼠模型,探讨2型糖尿病合并骨质疏松大鼠肝组织胰岛素信号通路相关因子的表达及意义。结果表明:随着时间延长,2型糖尿病合并骨质疏松组(DOVX组)肝组织IGF-1、IRS-1较其他组mRNA及蛋白表达减少,单纯去卵巢组(NOVX组)IGF-1、IRS-1 mRNA及蛋白表达较假手术对照组(NS组)降低;糖尿病组(DS组)IRS-2较NS组mRNA及蛋白表达下降,但NOVX组与NS组IRS-2 mRNA及蛋白表达比较无明显差别。以上结果表明,2型糖尿病合并骨质疏松的发生可能与肝脏胰岛素信号通路受抑制有关。  相似文献   

10.
周华  蔡国平 《生命的化学》2006,26(3):213-216
visfatin是新近发现的主要由人和小鼠内脏脂肪组织分泌的一种脂肪细胞因子,其结构与pre-B细胞集落增强因子相似。它能够发挥类似胰岛素的作用,与Ⅱ型糖尿病相关联,降低血糖,促进糖摄取,可结合并活化胰岛素受体,激活胰岛素信号通路。Visfatin与肥胖密切相关并能够促进脂肪细胞的分化,还能促进血管平滑肌细胞成熟。Visfatin的表达受炎症反应因子和多种激素的调节。Visfatin可能是联系机体糖脂代谢的重要分子,它的发现可为揭示糖尿病与肥胖的发生发展机制提供新的研究思路,为代谢综合征的治疗提供新方案。  相似文献   

11.
腺苷酸激活蛋白激酶(AMP-activated Protein Kina,AMPK)信号通路是调节细胞能量状态的中心环节,被称为"细胞能量调节器",在增加骨骼肌对葡萄糖的摄取、增强胰岛素(Insulins,Ins)敏感性、增加脂肪酸氧化以及调节基因转录等方面发挥重要作用.在整体水平,AMPK通过激素和脂肪细胞因子如瘦素、脂联素和抵抗素等调节能量的摄入和消耗.多种脂肪源性细胞因子表达异常与胰岛素抵抗(Insulin Resistance,IR)密切相关,而胰岛素抵抗又是Ⅱ型糖尿病发生的基础,并贯穿于Ⅱ型糖尿病发生发展的全过程.研究AMPK及脂肪细胞因子与胰岛素抵抗的关系,将为AMPK作为防治肥胖和Ⅱ型糖尿病提供新的药理学靶点.  相似文献   

12.
Sirt1是哺乳动物长寿基因Sir2的同源蛋白,越来越多研究表明Sirt1在糖脂代谢和胰岛素敏感性调节中起重要作用。Sirt1具有NAD依赖的去乙酰化酶的作用,可通过一系列底物去乙酰化,参与调节胰岛素敏感性。它通过影响胰岛素敏感性密切相关的信号蛋白,包括PGC-1α、PPARγ、PTP1B、NFκB/JNK等,影响其下游信号分子的表达或活性,调节糖脂代谢,抑制脂肪组织低级炎症,进而对胰岛素敏感性起着重要的调节作用。Sirt1还通过NAD+水平与AMPK相互调节,维持细胞的能量平衡。Sirt1可能成为改善胰岛素抵抗潜在的药物作用靶点。  相似文献   

13.
Tanis与胰岛素抵抗   总被引:1,自引:0,他引:1  
Tanis是新发现的由189个氨基酸残基组成的蛋白质,在肝脏、脂肪和骨骼肌等组织都有其基因表达.可能作为血清淀粉样蛋白A受体参与糖代谢,并与胰岛素抵抗、Ⅱ型糖尿病的发生与发展密切相关。Tanis在胰岛素抵抗、Ⅱ型糖尿病和代谢综合征动物模型的肝脏中表达水平与血糖及胰岛素浓度呈负相关.与血浆甘油三酯浓度呈正相关。Tanis的基因表达在禁食24h后的糖尿病动物模型中显增加,说明受葡萄糖调节。从目前的研究资料看,Tanis有可能成为治疗胰岛素抵抗、Ⅱ型糖尿病的新靶点而受到重视。  相似文献   

14.
目的:观察不同浓度的枸杞多糖(LBP)对HepG2细胞胰岛素抵抗的影响并探讨其机制。方法:采用高糖高胰岛素处理HepG2细胞24 h建立胰岛素抵抗细胞模型后,用台盼蓝检测活力大于95%的HepG2细胞,以104/孔密度接种于96孔板内,细胞贴壁后以30 μg/ml、100 μg/ml、300 μg/ml的LBP培养48 h,200 μl/well,各组均设4个复孔。检测不同浓度的LBP对HepG2细胞活性及胰岛素抵抗的影响;细胞内丙二醛(MDA)含量和超氧化物歧化酶(SOD)的活性;各组细胞胰岛素信号转导通路中相关蛋白(IRS-2、PI3-K、Akt、GLUT2)的表达。结果:MTT显示:与正常对照组相比,IR模型组MDA含量显著升高,SOD活力明显降低,同时IRS-2、PI-3K、Akt、GLUT2蛋白表达水平明显下降;与IR模型组相比,中、高浓度LBP组MDA的含量明显降低,SOD的活力显著升高,且IRS-2、PI-3K、Akt、GLUT2蛋白表达水平明显升高;在相同的时间内,随着LBP浓度的增加,OD值逐渐降低;在同一浓度干预下,随着时间的延长,OD值也逐渐降低;葡萄糖消耗实验表明中、高浓度的LBP可显著提高胰岛素抵抗HepG2细胞的葡萄糖消耗量,而低浓度LBP对HepG2细胞葡萄糖消耗量无明显影响。结论:中、高浓度枸杞多糖能改善HepG2细胞胰岛素抵抗,其作用机制可能与降低细胞氧化应激水平及提高胰岛素信号传导通路相关蛋白表达有关。  相似文献   

15.
胰岛素抵抗是肥胖、2型糖尿病发生的共同病理生理机制。肝脏是胰岛素介导的葡萄糖摄取、代谢、利用的重要靶器官,也是胰岛素抵抗发生的重要部位。研究表明,肝脏糖异生信号通路、胰岛素信号通路、脂质生成信号通路、自噬及活性氧生成与肝脏胰岛素抵抗密切相关。肝脏可产生多种长链非编码RNAs(lncRNAs),当其表达上调(如Blnc1、Risa、MALAT1、MEG3、SRA、Gm10768、H19和Gomafu)或下调(如lncSHGL)时,它们可调控肝脏糖异生信号通路、胰岛素信号通路、脂质生成信号通路、自噬及活性氧生成,从而参与肝脏胰岛素抵抗的发生与发展。该文对lncRNAs与肝脏胰岛素抵抗关系的阐明,将加深人们对lncRNAs功能及肝脏胰岛素抵抗机制的认知,为糖尿病的防治提供新的方向,lncRNAs有望成为治疗胰岛素抵抗和糖尿病的新靶点。  相似文献   

16.
目的:研究S型雌马酚(S-Equol,S-Eq)对高糖培养HepG2人肝癌细胞株胰岛素敏感性和胰岛素受体底物(insulin receptor substrate,IRS)-1表达的影响并探讨其可能的分子机制.方法:高糖培养HepG2细胞,1、10、100 μM S-Eq处理细胞后,MTT法检测细胞活力,硫酸蒽酮比色法检测胰岛素刺激细胞糖原合成量,Realtime PCR和Western blot法分别检测IRS-I mRNA及蛋白表达变化.结果:S-Eq对HepG2细胞活力无明显影响,但显著改善高糖培养条件下HepG2细胞胰岛素敏感性,其中10 μM S-Eq+H组胰岛素刺激后细胞糖原合成量上升最为显著(P<0.01),同时发现,S-Eq能显著上调IRS-1 mRNA和蛋白表达量.结论:S-Eq可能通过调控IRS-1的表达,增强高糖培养HepG2细胞胰岛素敏感性,这可能是S-Eq发挥其抗糖尿病作用的重要理论依据.  相似文献   

17.
王方  孟雁 《生理通讯》2007,26(5):121-126
胰岛素抵抗、胰岛β细胞功能受损是2型糖尿病的主要病因。高血糖、高血脂导致在代谢过程中,线粒体产生大量活性氧,其可损坏线粒体功能,引起氧化应激反应。氧化应激可以激活细胞内的一系列应激信号通路,如JNK/SAPK、p38MAPK、IKKβ/NF-kβ和氨基己醣通路等。这些应激通路的激活可以产生以下结果:(1)阻断胰岛素作用通路,导致胰岛素抵抗;(2)降低胰岛素基因表达水平;(3)抑制胰岛素分泌;(4)促进β细胞凋亡等。本文主要针对活性氧的产生、氧化应激诱导胰岛素抵抗和胰岛β细胞功能受损等机制加以综述,以便进一步阐明2型糖尿病的发病机理。  相似文献   

18.
胰岛β细胞功能衰竭和胰岛素抵抗是导致糖尿病发生发展的主要机制,目前的抗糖尿病药物没有针对糖尿病发病的关键环节,只能解除或缓解症状,延缓疾病进展,不能从根本上治愈该疾病.干细胞通过促进胰岛β细胞原位再生,提高胰岛β细胞自噬能力、调节胰岛巨噬细胞功能修复受损的胰岛β细胞以改善胰岛β细胞功能;通过多种途径活化骨骼肌、脂肪和肝脏IRS(1)-AKT-GLUT4信号通路改善外周组织胰岛素抵抗,为糖尿病的精准治疗提供了新的方向.我国研究者针对不同来源的干细胞使用不同输注方式治疗1型糖尿病和2型糖尿病开展了系列研究,取得了良好的临床疗效,且未发生严重不良反应,为干细胞治疗糖尿病的临床应用奠定了基础.  相似文献   

19.
胰岛素抵抗是以胰岛素生物学效应下降为特点的全身代谢性疾病,发病机制复杂,目前主要认为与脂质超载和炎症有关。Krüppel样转录因子(Krüppel-like factors, KLFs)是Cys2/His2锌指结构DNA结合蛋白的一个亚家族,参与调节心血管、内分泌、造血、免疫等系统的等多个生理过程。本文重点介绍了近年来KLF家族在肥胖、炎症和糖尿病发生发展过程中的最新研究进展,为深入了解KLF家族在胰岛素抵抗发病机制中的作用以及寻找药物治疗靶点提供参考。  相似文献   

20.
糖尿病是由于胰岛素分泌不足或胰岛素抵抗引起的以血糖升高为特征的代谢性疾病。有研究发现一些蛋白酪氨酸磷酸酶(proteintyrosine phosphatases,PTP)在胰岛素受体信号途径、胰岛素分泌和胰腺β细胞受自身免疫细胞攻击等生理或病理过程中起重要作用。以PTP1B、TCPTP和LYP为代表的PTP通过将底物去磷酸化,拮抗激酶催化的磷酸化反应,在一些信号通路中起到负相调节的作用。在糖尿病患者中发现这些PTP的单核苷酸突变使蛋白表达增加或酶活力增强,因而施用这些潜在靶蛋白的小分子抑制剂成为治疗1型或2型糖尿病可能的新疗法。而PTPIA-2/IA-2β的胞内磷酸酶结构域被发现是大量1型糖尿病患者的自身免疫原,因此可针对PTPIA-2/IA-2β发展早期诊断并预防1型糖尿病的试剂盒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号