首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
家蝇幼虫壳聚糖的抑菌活性及影响因子   总被引:2,自引:0,他引:2  
为研究昆虫壳聚糖的抑菌活性及影响因子, 由家蝇Musca domestica幼虫制备了10个不同分子量的壳聚糖,在不同条件下分别对6种细菌作抑菌实验, 并通过测定细菌细胞膜和细胞壁的透性初步探讨了壳聚糖的抑菌机理。结果表明,分子量在21~251 kD的壳聚糖有很强的抑菌活性,抑菌活性呈现随pH的降低而增加的趋势,pH 5.5时最低抑菌浓度在0.03%~0.06%之间,Ca2+和Mg2+能够显著降低壳聚糖的抑菌作用。通过对实验结果的方差分析表明,壳聚糖的不同分子量、pH值和金属离子等外界因素都是壳聚糖抑菌活性的极显著影响因素,而菌株本身也是极显著影响因素之一。壳聚糖能够增加细胞膜通透性,造成细胞内容物的外泄。  相似文献   

2.
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.  相似文献   

3.
Chitosan has excellent emulsifying properties. Emulsifying activity and stability of chitosan were determined by integrated light scattering technique and turbidimetric method. The effects of concentration, degree of deacetylation and molecular weight on emulsifying properties of chitosan were systematically studied in the paper. Emulsifying activity of chitosan initially increased, arrived at the peak at 0.75% and then declined, while emulsifying stability continuously increased with a rise of chitosan concentration from 0.25% to 1.25%. Emulsifying activity and stability of chitosan initially decreased and reached the minimum, then increased with the rise of degree of deacetylation. Chitosan with DD 60.5% and 86.1% showed superior emulsifying activity and stability. Chitosan with low Mw exhibited better emulsifying activity than those with high Mw. Chitosan with Mw 410 kDa and 600 kDa showed superior emulsifying activity in the test range. Emulsifying stability of chitosan increased with a rise of Mw.  相似文献   

4.
目的 壳聚糖(chitosan,CS)是一种天然的广谱抗菌活性物质。现有研究表明,壳聚糖与细菌细胞膜的相互作用是其发挥抗菌功能的关键。受限于传统实验技术的表征能力,壳聚糖与细菌细胞膜相互作用的具体机制仍有待研究。本文旨在研究壳聚糖与细菌细胞膜相互作用的分子机制。方法 本研究利用全原子分子动力学模拟技术主要探究了完全脱乙酰化的不同聚合度壳聚糖(八聚糖、十二聚糖和十六聚糖)与革兰氏阴性菌外膜(outer membrane,OM)和革兰氏阳性菌质膜(cytoplasmic membrane,CM)相互作用的动态过程。结果 壳聚糖主要依靠其氨基、碳6位羟基和碳3位羟基与OM和CM的头部极性区发生快速结合。随后壳聚糖末端糖基单元倾向于插入OM内部,深度约1 nm,并与脂质分子脂肪酸链上的羰基形成稳定的氢键相互作用。与之相比,壳聚糖分子难以稳定地插入CM内部。壳聚糖结合对膜结构性质产生影响,主要表现在降低OM和CM的单分子脂质面积,显著减少OM和CM极性区的Ca2+和Na+数目,破坏阳离子介导的脂质间相互作用。结论 本研究证明,壳聚糖带正电的氨基基团是介导其与膜相互作用的关键,并破环脂质间的相互作...  相似文献   

5.
The possibility of obtaining monosaccharide derivatives of low-molecular-weight chitosan with the use of the Maillard reaction was studied. Chitosan derivatives (molecular weight, 24 and 5 kDa) obtained with glucosamine, N-acetyl galactosamine, galactose, and mannose with a substitution degree of 4-14% and a yield of 60-80% were obtained. Some physicochemical and biological properties of these derivatives were studied. We showed that monosaccharide derivatives of low-molecular-weight chitosan exhibited antibacterial activity. Chitosan at a concentration of 0.01% caused 100% death of bacteria B. subtilis and E. coil. The strongest antibacterial effect was exhibited by 24-kDa derivatives: only 0.02-0.08% of cells survived. These derivatives were two orders of magnitude more effective than the 5-kDa chitosan modified with galactose.  相似文献   

6.
壳聚糖对植物病原细菌的抑制作用研究   总被引:7,自引:1,他引:6  
本文通过测定最小抑制浓度和相对抑制率,观察了分子量和脱乙酰度对壳聚糖抑制植物病原细菌(胡萝卜软腐欧文氏菌Erwinia cartovara Var carotovara、油菜黄单孢菌绒毛草致病菌Xanthamonas campestris Pv holcicola、丁香假单孢菌黍致病变种Pseudomonas spyings Pv panici)作用的影响。结果表明:在一定范围内,随分子量和脱乙酰度的增大,壳聚糖的抑菌效果相应降低,而且各种病原细菌对不同,壳聚糖的敏感性也有很大差异。  相似文献   

7.
Preparation and antibacterial activity of chitosan nanoparticles   总被引:17,自引:0,他引:17  
Qi L  Xu Z  Jiang X  Hu C  Zou X 《Carbohydrate research》2004,339(16):2693-2700
Chitosan nanoparticles, such as those prepared in this study, may exhibit potential antibacterial activity as their unique character. The purpose of this study was to evaluate the in vitro antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against various microorganisms. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. Copper ions were adsorbed onto the chitosan nanoparticles mainly by ion-exchange resins and surface chelation to form copper-loaded nanoparticles. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, atomic force microscopy (AFM), FTIR analysis, and XRD pattern. The antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against E. coli, S. choleraesuis, S. typhimurium, and S. aureus was evaluated by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results show that chitosan nanoparticles and copper-loaded nanoparticles could inhibit the growth of various bacteria tested. Their MIC values were less than 0.25 microg/mL, and the MBC values of nanoparticles reached 1 microg/mL. AFM revealed that the exposure of S. choleraesuis to the chitosan nanoparticles led to the disruption of cell membranes and the leakage of cytoplasm.  相似文献   

8.
This study evaluated individual contributions of dissolving acids (acetic acid, lactic acid, and hydrochloric acid) or acid solubilized chitosan to the antibacterial activity against Listeria innocua and Escherichia coli as solutions and dried films. Solutions containing chitosan showed significantly (P?<?0.05) different inhibitory activity (measured as percentage of inhibition (PI), in percent) against L. innocua and E. coli, compared to equivalent acid solutions. This increase was calculated as additional inhibition (AI, in percent), which could be as high as 65 % in solutions containing 300–320 kDa chitosan depending on the acid type, bacterial species, and the chitosan form (α or β). Solutions containing 4–5 kDa chitosan had lower AI and showed much greater variability among the different chitosan forms, acid types, and bacterial species. Higher molecular weight (Mw) chitosan also showed significantly higher levels of adsorption to bacterial cells than that of lower Mw samples, suggesting that the observed increase in inhibition was the result of surface phenomena. The contribution of acids to the antibacterial activity of chitosan films was assessed by comparing non-rinsed and rinsed films (rinsed in the appropriate broth to remove residual acids and active fragments formed on the dried film). Rinsing β-chitosan films has reduced PI by as much as 28 % compared with non-rinsed films, indicating that part of the antibacterial activity of chitosan films is due to the presence of soluble acid compounds and/or other active fragments. Overall, both acidulant and chitosan were found to contribute to the antibacterial activity of acid solubilized α- and β-chitosan, with the exact antibacterial activity of chitosan varying based on the solution and film properties, suggesting a complex interaction.  相似文献   

9.
Galactose dialdehyde: the forgotten candidate for a protein cross-linker?   总被引:31,自引:0,他引:31  
Chitosan derivatives with quaternary ammonium salt, such as N,N,N-trimethyl chitosan, N-N-propyl-N,N-dimethyl chitosan and N-furfuryl-N,N-dimethyl chitosan were prepared using different 96% deacetylated chitosan of M(v) 2.14x10(5), 1.9x10(4), 7.8x10(3). Amino groups on chitosan react with aldehydes to from a Schiff base intermediate. Quaternized chitosan were obtained by reaction of a Schiff base with methyl iodide. The yields, degree of quaternization and water-solubility of quaternized chitosan were influenced by the molecular weight of the chitosan sample. The antibacterial activities of quaternized chitosan against Escherichia coli were explored by calculation of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in water, 0.25 and 0.50% acetic acid medium. Results show the antibacterial activities of quaternized chitosan against E. coli is related to its molecular weight. Antibacterial activities of quaternized chitosan in acetic acid medium is stronger than that in water. Their antibacterial activities is increased as the concentration of acetic acid is increased. It was also found that the antibacterial activity of quaternized chitosan against E. coli is stronger than that of chitosan.  相似文献   

10.
Preparation, molecular characteristics, and aggregation activity of low-molecular-weight chitosans derived from β-chitin have been studied in comparison with those of chitosans from -chitin. Chitosan derived from β-chitin was partially degraded with alkali and acid to prepare chitosans with reduced molecular weights. The reaction was also conducted with chitosan from -chitin, but it was less susceptible to the degradation than chitosan from β-chitin. The resulting two series of chitosans had molecular weights ranging from 11 to 436 kDa. GPC analysis showed similar changes in the molecular weight distribution in the progress of main chain cleavage of the two kinds of chitosans. The polydispersity values were 2.01–4.16, indicating relatively narrow molecular weight distributions. These chitosans aggregated bovine serum albumin efficiently, and the aggregation behavior was dependent on the molecular weight and concentration of chitosan in addition to the pH of the media and concentration of sodium chloride. The aggregation activity of chitosans from β-chitin was found to be somewhat higher than that of chitosans from -chitin.  相似文献   

11.
Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.  相似文献   

12.
Chitosan hybrid membranes were prepared in the presence of polyethylacrylate and polybutylacrylate and characterized by measuring stress, strain, Young’s modulus, swelling behavior and antibacterial properties against gram-negative and gram-positive bacteria using IR spectroscopy and scanning electron microscopy (SEM). The results show that the mechanical properties of the hybrid membranes were enhanced using polybutylacrylate. SEM images showed homogeneity of the prepared membranes. The swelling degree was of the order chitosan > chitosan/polyethylacrylate > chitosan/polybutylacrylate. Antibacterial properties of the hybrid membranes with polybutylacrylate and polyethylacrylate were higher than those of chitosan membranes without any additives.  相似文献   

13.
Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes.  相似文献   

14.
Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) causes bacterial speck of tomato, a widely spread disease that causes significant economical losses worldwide. It is representative of many bacterial plant diseases for which effective controls are still needed. Despite the antimicrobial properties of chitosan has been previously described in phytopathogenic fungi, its action on bacteria is still poorly explored. In this work, we report that the chitosan isolated from shrimp exoskeletons (70 kDa and 78 % deacetylation degree) exerts cell damage on Pto DC3000. Chitosan inhibited Pto DC3000 bacterial growth depending on its concentration, medium-pH, and presence of metal ion (Mg+2). Biochemical and cellular changes resulting in cell aggregation and impaired bacterial growth were also viewed. In vivo studies using fluorescent probes showed cell aggregation, increase in membrane permeability, and cell death, suggesting the chitosan antibacterial activity is due to its interaction as a polycation with Pto DC3000 membranes. Transmission electron microscopic analysis revealed that chitosan also caused morphological changes and damage in bacterial surfaces. Also, the disease incidence in tomato inoculated with Pto DC3000 was significantly reduced in chitosan pretreated seedlings, revealing a promising action of chitosan as nontoxic biopesticide in tomato plants. Indeed, a wider comprehensive knowledge of the mechanism of action of chitosan in phytopathogenic bacterial cells will increase the chances of its successful application to the control of spread disease in plants.  相似文献   

15.
Antibacterial characteristics and activity of acid-soluble chitosan   总被引:6,自引:0,他引:6  
The antibacterial activity of chitosan was investigated by assessing the mortality rates of Escherichia coli and Staphylococcus aureus based on the extent of damaged or missing cell walls and the degree of leakage of enzymes and nucleotides from different cellular locations. Chitosan was found to react with both the cell wall and the cell membrane, but not simultaneously, indicating that the inactivation of E. coli by chitosan occurs via a two-step sequential mechanism: an initial separation of the cell wall from its cell membrane, followed by destruction of the cell membrane. The similarity between the antibacterial profiles and patterns of chitosan and those of two control substances, polymyxin and EDTA, verified this mechanism. The antibacterial activity of chitosan could be altered by blocking the amino functionality through coupling of the chitosan to active agarose derivatives. These results verify the status of chitosan as a natural bactericide.  相似文献   

16.
A series of four water-soluble chitosan derivatives differing in molecular mass, hydrophobicity, and charge was synthesized and tested for the intensity of their effects on Gram-negative and Gram-positive bacteria. It was shown that the tested compounds allowed the penetration of ethidium bromide into the bacteria, which showed increased permeability of their cell walls under the effect of chitosans. The tolerance to various chitosan derivatives differed in Gram-negative and Gram-positive bacteria. The Gram-negative bacteria were the most responsive to high-molecular chitosan and the Gram-positive ones, to N-,O-carboxypropylchitosan, whereas high-molecular chitosan had little effect. Research on the correlation between the structure and activity of the studied compounds revealed that depolymerization of chitosan reduced, and introduction of hydrophobic substantives in chitosan molecule significantly enhanced its permeability effect on bacterial cell walls. The obtained results provide a basis for the construction of new chitosan derivatives with antimicrobial activities.  相似文献   

17.
The possibility of obtaining monosaccharide derivatives of low-molecular-weight chitosan with the use of the Maillard reaction was studied. Chitosan derivatives (molecular weight, 24 and 5 kDa) obtained with glucosamine, N-acetyl galactosamine, galactose, and mannose with a substitution degree of 4–14% and a yield of 60–80% were obtained. Some physicochemical and biological properties of these derivatives were studied. We showed that monosaccharide derivatives of low-molecular-weight chitosan exhibited antibacterial activity. Chitosan at a concentration of 0.01% caused 100% death of bacteria B. subtilis and E. coli. The strongest antibacterial effect was exhibited by 24-kDa derivatives: only 0.02–0.08% of cells survived. These derivatives were two orders of magnitude more effective than the 5-kDa chitosan modified with galactose.  相似文献   

18.
壳聚糖抑菌机制的初步研究   总被引:4,自引:0,他引:4  
壳聚糖在医学、食品、环保、日化用品等领域有着广泛而重要的应用.近年来,壳聚糖由于对不同的菌类都具有良好的抑菌效果而被研究者们密切关注.然而,有关壳聚糖抑菌机制的研究却并不多,其抑菌机制也没有被完全阐明.在本研究中,我们发现很多金属离子可以对壳聚糖的抑菌效果产生影响,高浓度金属离子(0.5%)可以使壳聚糖完全丧失抑菌活性.还发现金黄色葡萄球菌和白色念珠菌在壳聚糖的作用下会发生钾离子和ATP的渗漏,而且五万分子量的壳聚糖引起钾离子和ATP的渗漏大约比五千分子量壳聚糖多2到4倍.不同分子量的壳聚糖对金黄色葡萄球菌和白色念珠菌都具有较好的抑菌效果,但是引起钾离子和ATP的渗漏量却存在很大差异,这说明小分子量壳聚糖很可能存在与大分子量壳聚糖不同的抑菌机制.  相似文献   

19.
Chitosan functional properties   总被引:7,自引:0,他引:7  
Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy β-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
家蝇蛆抗菌肽提取工艺研究   总被引:4,自引:0,他引:4  
陆婕  钟雅  柳林  付康  陈正望 《昆虫学报》2007,50(2):106-112
蝇蛆抗菌肽多有广谱抗菌、抗癌等功能,是很好的天然抗菌药物来源,但由于得率较低,目 前对其产品开发的研究较少。以家蝇Musca domestica干蝇蛆为原料,利用加热-层析法和海藻酸吸附法2种工艺提取蝇蛆抗菌肽。结果表明:加热-层析法快速、简便,抗菌肽提取得率达0.26%,是海藻酸吸附法提取抗菌肽得率的5.2倍。提取的家蝇抗菌肽主要是分子量6.2~17.2 kD、等电点5.59~5.91的弱酸性小分子多肽,其热稳定性高,能杀灭枯草杆菌Bacillus subtilis等多种革兰氏阳性菌。加热-层析法能有效去除外源性蛋白酶,保证肽类产品的稳定性,同时还能提取出非蛋白类的抗菌成分,提示其对开发具有高附加值的抗菌产品将会有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号