首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
雄性昆虫性信息素的研究进展   总被引:1,自引:1,他引:0  
全面概述雄性昆虫性信息素的研究进展。主要从性信息素的释放机制及其作用、已发现的雄性昆虫性信息素及其化学结构进行阐述。通过不同部位释放的雄性昆虫性信息素种类是多样的,但其化学结构的差异又是细微的,雄性昆虫则利用这些差异来引诱雌性昆虫、促进交配和生殖隔离等。最后对雄性昆虫性信息素的研究作了展望。  相似文献   

2.
蛾类昆虫雄性信息素及其功能   总被引:2,自引:0,他引:2  
昆虫性信息素是两性通讯系统的基础,其中雄性信息素的研究相对较少。本文综述了蛾类昆虫雄性信息素的研究进展。迄今已鉴定出40余种蛾类昆虫的雄性信息素,其行为学功能主要有对雌性的引诱和激欲、对同种雄性的抑制及种间隔离等。  相似文献   

3.
昆虫聚集信息素   总被引:14,自引:0,他引:14  
姜勇  雷朝亮  张钟宁 《昆虫学报》2002,45(6):822-832
昆虫聚集信息素是昆虫重要的信息化学物质之一,对昆虫的聚集行为有重要意义。近三十年来,国外鉴定了多种昆虫聚集信息素,主要成分为一些烃、醇、醛、酮、酯、酸、酸酐、胺以及腈类化合物,但其在有害生物可持续治理中的应用潜能尚未充分利用;昆虫聚集信息素的来源多样,除蛹外,多个虫态均有聚集信息素释放,有些学者甚至把一些寄主释放的挥发物作为聚集信息素的组分;同种昆虫,不同生理状态,其聚集信息素可以完全不同或同一信息化学物质的功能不同;但是,并非所有昆虫的聚集行为均为聚集信息素调节,利他素、性信息素以及报警信息素等其它信息化学物质均能导致一些昆虫的聚集。本文综述了5目17科55种昆虫的聚集信息素。  相似文献   

4.
董红  刘孟英 《生命科学》1996,8(5):26-31
鳞翅目昆虫腺体产生和释放性信息素是由其信息素生物合成活化种经肽(PBAN)调控的。文章综述了PBAN的结构、结构与活性的关系以及PBAN的作用模式等方面的最新研究进展,可看出从3种昆虫中分离出的PBAN结构在很大程度上相似,PBAN的传递方式基本有两种,同时发现对于某些昆虫来说.除了PBAN对信息素合成的调控外,还有其它因子的参与,从而说明鳞翅目昆虫信息素合成调控所包含的机制是复杂和多样的。  相似文献   

5.
一、什么是昆虫性信息素性信息素(sexpheromone)是由一种昆虫产生和释放出来,引诱或激起同种异性昆虫交配的化学物质。昆虫性信息素按其作用方式可分为两种:一种是挥发性性信息素,有远距离的引诱效果,它广泛存在于鳞翅目昆虫及其它种类的昆虫中;另一种是非挥发性性信息素,须由接受的一性与释放的一性接触才能起作用,称之为性识  相似文献   

6.
昆虫寄主标记信息素   总被引:8,自引:2,他引:6  
陈华才  程家安 《生态学报》2005,25(2):346-350
综述了昆虫寄主标记信息素的研究进展。昆虫寄主标记信息素是指由昆虫产生的用来标记寄主上有同种个体存在的化学物质。昆虫寄主标记信息素的主要生态学功能是调节昆虫的产卵行为,通过阻止自身或同种其它个体对已标记寄主的产卵选择,或减少产卵量来减少后代之间对寄主资源的竞争。寄主标记信息素也会给释放着带来不利的影响,如信息盗用和盗寄生现象等。昆虫寄主标记信息素也调节昆虫近缘种之间对共同寄主资源的竞争。近缘种昆虫对相互寄主标记信息素识别能力的差异反映了不同昆虫对同一寄主资源竞争能力的强弱。寄主标记信息素产生和贮存的部位一般与外分泌腺、消化系统或生殖系统相联系,杜氏腺、毒腺、前胸腺、腹腺、下唇腺、后产卵管、卵巢、中肠和后肠等是产生或贮存寄主标记信息素的常见部位。产生的寄主标记信息素一般在成虫产卵时由产卵器、口器或排泄口释放到寄主体内或体表。卵寄生蜂的寄主标记信息素一般标记在寄主的体表,雌成蜂用触角检测;其它寄生蜂的寄主标记信息素常产在寄主体内,用产卵器检测;植食性昆虫的寄主标记信息素只产在寄主表面,用触角或产卵器检测。昆虫的产卵器、口器、触角或跗节上着生有感受寄主标记信息素的化感器,可以检测到标记在寄主体内或体表的寄主标记信息素。昆虫寄主标记信息素的完全定性涉及活性化合物的分离、鉴定、合成以及行为测定等,已有几种昆虫的寄主标记信息素成分得到了分离鉴定。  相似文献   

7.
郑凯迪  杜永均 《昆虫学报》2012,55(9):1093-1102
蛾类昆虫性信息素受体首先从烟芽夜蛾Heliothis virescens和家蚕Bombyx mori中鉴定出来, 到目前为止已经克隆得到了19种蛾类昆虫的几十种性信息素受体基因, 并且这些基因在系统发育树中聚成一个亚群。性信息素受体从蛾类蛹期开始表达, 主要表达在雄性触角的毛形感器中, 少部分受体在雌性触角、 雄性触角其他感器以及身体其他部位中也有表达。大部分蛾类性信息素受体的配体并不是单一的, 而是能够对多种性信息素组分有反应, 部分性信息素受体还能够识别性信息素以外的其他物质, 还有一部分性信息素受体的识别配体目前尚不清楚。另外发现在雌性蛾类触角中也存在一些嗅觉受体能够识别雄性分泌的性信息素。在蛾类性信息素受体与性信息素识别的过程中, 性信息素结合蛋白不仅能够特异性地运送配体到嗅觉神经元树状突上, 还能够提高性信息素与性信息素受体之间的结合效率。另外, OrCo类受体与性信息素受体共表达在嗅觉神经元中, 在蛾类性信息素受体与配体的识别过程中扮演了重要角色。但是蛾类信息素对神经元刺激的终止并非由性信息素受体控制, 而是由细胞中的气味降解酶等其他因子调控。蛾类性信息素受体研究中还有很多疑问需要解答, 其过程可能比我们想象的更为复杂。  相似文献   

8.
鱼类信息素研究概况   总被引:2,自引:1,他引:1  
信息素在鱼类的生活史中起重要的作用。根据其功能差异,可以将信息素分为报警、社会组织和繁殖三大类。焦虑信息素和报警信息素在鱼类中具有提醒同种个体逃离捕食的功能,其中骨鳔鱼类的报警信息素可能是一些嘌呤或蝶呤类的物质;胆汁酸可能在鱼类的个体识别、亲缘选择以及洄游等方面起主要的作用;性信息素则具有同步繁殖活动的重要功能,在硬骨鱼类中,现已发现的性信息素几乎都是被释放到体外的性激素及其代谢产物,而雄性海七鳃鳗(Petromyzon marinus)使用胆汁酸吸引异性。  相似文献   

9.
昆虫信息素结合蛋白是气味结合蛋白多基因家族的一个分支,在昆虫识别性信息素过程中起重要作用。该文从信息素结合蛋白的分子特征、与信息素分子的结合及释放机制、生理功能和进化基因组学等方面进行了综述,针对鳞翅目昆虫进行了重点阐述。  相似文献   

10.
赵博光 《昆虫知识》1990,27(3):166-168
<正> 一、昆虫的表皮腺体及其分类 昆虫的表皮腺体是由昆虫体壁表皮细胞层中的某些特化的具有外分泌功能的细胞组成。这些表皮腺体除口腔中的唾腺在昆虫的消化、造丝等方面的功能之外,主要具有分泌种信息素和防御性物质的功能。近年来,由于人们逐渐认识到昆虫表皮腺体的分泌物对昆虫行为和生理的重要性,特别是利用昆虫性信息素在控制害虫和研究害虫的成功,加上扫描和透射电子显微镜使用的普及,促进了对表皮腺体的研  相似文献   

11.
In several insect species, male mating success is higher in older than in younger males, although condition diminishes dramatically with age. Two hypotheses are under debate to explain the counterintuitive pattern of old male mating advantage: first, an increased eagerness of older males to mate, driven by their low residual reproductive value, and second female preference for older males based on chemical cues such as sex pheromones (female choice hypothesis). In a series of experiments, we manipulated female olfaction, male pheromone blend and female age to test whether old male mating advantage prevails when the influence of male sex pheromones is controlled for, using the tropical butterfly Bicyclus anynana as model. We found that older males had a higher mating success than younger ones irrespective of female scent‐sensitivity and irrespective of male pheromone blend. Interestingly, older males were found to court more often and for longer time bouts than younger males. These results were independent of female age, although younger males courted younger females more often and for longer bouts than older females. Taken together, our results indicate that male courtship activity (1) is higher in older compared to younger males and (2) increases the mating success of older males. Olfaction and sensing pheromones, in contrast, were not a necessary prerequisite for old male mating advantage to occur and may use other cues than pheromones to assess male quality.  相似文献   

12.
Scent marking is common among male and female rodents and might be used in male-male competition and as a mechanism for mate attraction. I tested the hypotheses that females would choose males based on their frequency and placement of scent marks, and that a female would advertise interest in a particular male by placing her scent marks on or near those of a preferred mating partner. In a series of experiments conducted with prairie voles, Microtus ochrogaster, females did not choose mates based on the frequency or placement of scent marks by males nor did they advertise their interest in a particular male through the frequency or placement of scent marks. The number of males chosen that scent-marked more than their opponents did not differ significantly between females exposed (11 of 15) and not exposed (10 of 15) to scents of males. Females exposed and not exposed to scents of males preferred seven of the same males that had scent-marked more than their opponents. When a third group of females was exposed to four times more scent of the less preferred than preferred males, they still chose the preferred males. Thus, the frequency and placement of scent marks by males were not used to assess males for mate choice nor did female prairie voles use scent to advertise their preference for a mating partner. In that scent marking is common in male and female mammals, scent quality might be more important than quantity in male-male competition and mate attraction.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .  相似文献   

13.
Pheromones act as attractants and sexual stimulants in most vertebrates. For example, in red-spotted newts, Notophthalmus viridescens, female pheromones attract males, and male pheromones increase female receptivity. However, no studies have determined whether male vertebrates produce a pheromone that repels competing males. Through a series of olfactory mate selection tests, we found that sexually motivated male red-spotted newts produce a pheromone that functions to repel other approaching males. Our finding is the first report of a repelling function for pheromones in male vertebrates. The pheromones may act to increase both the sender's and receiver's mating success when the operational sex ratio (OSR) is male biased.  相似文献   

14.
Scent marking can provide behavioral and physiological information including territory ownership and mate advertisement. It is unknown how mating status and pair cohabitation influence marking by males from different social systems. We compared the highly territorial and monogamous California mouse (Peromyscus californicus) to the less territorial and promiscuous white-footed mouse (P. leucopus). Single and mated males of both species were assigned to one of the following arenas lined with filter paper: control (unscented arena), male scented (previously scent-marked by a male conspecific), or females present (containing females in small cages). As expected, the territorial P. californicus scent marked and overmarked an unfamiliar male conspecific's scent marks more frequently than P. leucopus. Species differences in responses to novel females were also found based on mating status. The presence of unfamiliar females failed to induce changes in scent marking in pair bonded P. californicus even though virgin males increased marking behavior. Pair bonding appears to reduce male advertisement for novel females. This is in contrast to P. leucopus males that continue to advertise regardless of mating status. Our data suggest that communication through scent-marking can diverge significantly between species based on mating system and that there are physiological mechanisms that can inhibit responsiveness of males to female cues.  相似文献   

15.
After mating, females may experience a decline in sexual receptivity and attractiveness that may be associated with changes in the production and emission of sex pheromones. In some cases, these changes are produced by chemical substances or structures (e.g., mating plugs) produced by males as a strategy to avoid or reduce sperm competition. In scorpions, sex pheromones may be involved in finding potential mates and starting courtship. Here, we tested the hypothesis that the males of Urophonius brachycentrus, a species that produces a mating plug, use chemical communication (sex pheromones) to detect, localize, and discriminate females according to their mating status (virgin or inseminated), aided by chemical signaling. We also explored the effect of extracting of the mating plug on chemical communication and mating acceptance. We used Y‐maze olfactometers with different stimuli to analyze male choice and exploration time. To evaluate mating acceptance, we measured the attractiveness and receptivity of females of different mating status. We found that chemical communication occurs through volatile pheromones, but not contact pheromones. Males equally preferred sites with virgin or inseminated females with removed mating plug. In turn, females with these mating statuses were more attractive and receptive for males than inseminated females. This study suggests that the mating plug significantly affects female chemical attractiveness with an effect on volatile pheromones and decreasing sexual mating acceptance of females. The decline in the female's sexual receptivity is a complex process that may respond to several non‐exclusive mechanisms imposed by males and strategically modulated by females.  相似文献   

16.
17.
We describe the morphology of alar androconia and the female abdominal scent gland of Heliconius erato phyllis, Heliconius ethilla narcaea, and Heliconius besckei. Androconial scales of Heliconius, which are arranged in overlapping wing bands, release pheromones during courtship, probably through vibratory movements of male wings over the female to induce her to mate. An antiaphrodisiac is produced by glands located in the valves of the male and is transferred during copulation to the yellow dorsal abdominal sac present in the virgin female, causing this sac to emit a scent that reduces the attractiveness of the female for courtship with other males. Stereomicroscopy, SEM, and TEM analyses were conducted to describe the morphology of the internal and external scales and the external abdominal scent sac. The findings revealed different sizes of external androconial scales and an internal group of porous structural vesicles that are probably related to the preservation of internal space, reception and storage of secretions, and elimination of volatiles when the male is actively involved in courtship. Translucent projections on the female abdominal scent sac create open reservoirs for the reception, storage, and emission of antiaphrodisiac volatiles along with stink clubs. Male valve denticles vary in form and probably attach securely to the female sac during mating, thus ensuring secretion transfer. These features are discussed in the context of a comparative analysis.  相似文献   

18.
Martín J  López P 《PloS one》2012,7(1):e30108

Background

Many animals produce elaborated sexual signals to attract mates, among them are common chemical sexual signals (pheromones) with an attracting function. Lizards produce chemical secretions for scent marking that may have a role in sexual selection. In the laboratory, female rock lizards (Iberolacerta cyreni) prefer the scent of males with more ergosterol in their femoral secretions. However, it is not known whether the scent-marks of male rock lizards may actually attract females to male territories in the field.

Methodology/Principal Findings

In the field, we added ergosterol to rocks inside the territories of male lizards, and found that this manipulation resulted in increased relative densities of females in these territories. Furthermore, a higher number of females were observed associated to males in manipulated plots, which probably increased mating opportunities for males in these areas.

Conclusions/Significance

These and previous laboratory results suggest that female rock lizards may select to settle in home ranges based on the characteristics of scent-marks from conspecific males. Therefore, male rock lizards might attract more females and obtain more matings by increasing the proportion of ergosterol when scent-marking their territories. However, previous studies suggest that the allocation of ergosterol to secretions may be costly and only high quality males could afford it, thus, allowing the evolution of scent-marks as an honest sexual display.  相似文献   

19.
Spider sex pheromones: emission, reception, structures, and functions   总被引:1,自引:0,他引:1  
Spiders and their mating systems are useful study subjects with which to investigate questions of widespread interest about sexual selection, pre- and post-copulatory mate choice, sperm competition, mating strategies, and sexual conflict. Conclusions drawn from such studies are broadly applicable to a range of taxa, but rely on accurate understanding of spider sexual interactions. Extensive behavioural experimentation demonstrates the presence of sex pheromones in many spider species, and recent major advances in the identification of spider sex pheromones merit review. Synthesised here are the emission, transmission, structures, and functions of spider sex pheromones, with emphasis on the crucial and dynamic role of sex pheromones in female and male mating strategies generally. Techniques for behavioural, chemical and electrophysiological study are summarised, and I aim to provide guidelines for incorporating sex pheromones into future studies of spider mating. In the spiders, pheromones are generally emitted by females and received by males, but this pattern is not universal. Female spiders emit cuticular and/or silk-based sex pheromones, which can be airborne or received via contact with chemoreceptors on male pedipalps. Airborne pheromones primarily attract males or elicit male searching behaviour. Contact pheromones stimulate male courtship behaviour and provide specific information about the emitter's identity. Male spiders are generally choosy and are often most attracted to adult virgin females and juvenile females prior to their final moult. This suggests the first male to mate with a female has significant advantages, perhaps due to sperm priority patterns, or mated female disinterest. Both sexes may attempt to control female pheromone emission, and thus dictate the frequency and timing of female mating, reflecting the potentially different costs of female signalling and/or polyandry to both sexes. Spider sex pheromones are likely to be lipids or lipid soluble, may be closely related to primary metabolites, and are not necessarily species specific, although they can still assist with species recognition. Newer electrophysiological techniques coupled with chemical analyses assist with the identification of sex pheromone compounds. This provides opportunities for more targeted behavioural experimentation, perhaps with synthetic pheromones, and for theorising about the biosynthesis and evolution of chemical signals generally. Given the intriguing biology of spiders, and the critical role of chemical signals for spiders and many other animal taxa, a deeper understanding of spider sex pheromones should prove productive.  相似文献   

20.
We conducted an experiment to test three alternative hypotheses for the function of frequency of scent marking in male prairie voles, MICROTUS OCHROGASTER: (1) sexual attraction (to advertise male quality for mating); (2) reproductive competition; and (3) self-advertisement or individual identity. In laboratory experiments, males deposited scent on all areas of a bare substrate, and more in an area next to a stimulus animal than other areas, regardless of the stimulus animal's sex. Females did not choose mates based on their frequency of scent marking and scent marking did not antagonize or stimulate aggression between males. The frequency of scent marking by males supports the individual identity hypothesis, and is less consistent with the sexual attraction or reproductive competition hypotheses. Mate choice is likely based on a complex suite of characters, but at least in prairie voles, the frequency of scent marking by males does not appear to be one of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号