首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用分光光度法在体外研究了不同pH条件下马铃薯'转心乌'块茎花色苷颜色呈现和降解速率的变化,以探讨马铃薯'转心乌,块茎颜色呈现的机理.结果显示:在pH 2.0时,该花色苷呈现最强烈的红色.随着pH从0增加到13.0,该花色苷在可见光区的最大吸收波长(λvis max)依次出现红移、蓝移,然后消失,在可见光区的最大吸收波长处的吸光值(Aλ,vis max)呈现为一条单峰曲线,峰值在pH 2.0处.当原始pH值被恢复到2.0后,如果原始pH小于或等于5.0,花色苷的红色均被恢复得更浓烈,λvis max不同程度地趋向537 nm,Aλ,vis max增加;如果原始pH大于或等于6.0,花色苷的红色根本不能被恢复,λvis max几乎不变,Aλ,vis max仍然维持低水平.在15℃、黑暗中,该花色苷在pH 0~5.0条件下均随时间推移而降解,在pH 2.0时的降解速度最慢;当pH小于或等于3.0时,该花色苷总体上降解缓慢,而且降解过程基本符合一级反应动力学.研究表明,'转心乌'块茎花色苷在可见光区的吸收光谱和在15℃、黑暗中的降解速度均具pH依赖性.  相似文献   

2.
马铃薯''转心乌''块茎色素的组成和含量   总被引:2,自引:0,他引:2  
马铃薯转心乌块茎的内、外韧皮部和髓为淡黄色,周皮和木质部为紫色;木质部的紫色形成一个不规则的环",并向内韧皮部蔓延.系列特征颜色反应和紫外可见光谱分析表明:‘转心乌’块茎紫色素属于黄酮类化合物,可能含有酚性邻位二羟基,并被肉桂酸酰化,不含类胡萝卜素、查耳酮、噢哢、异黄酮、儿茶素;花色苷和/或其苷元花色素奠定了‘转心乌’块茎着色的基础,其它的非红色的黄酮类化合物发挥共色素的作用.块茎的皮"紫色最浓","环"其次,"肉"最淡,这与"皮"、"环"和"肉"的色价、花色苷含量和总黄酮类化合物含量的变化趋势呈正相关.  相似文献   

3.
梅花‘南京红须’、‘南京红’花色的呈现特征   总被引:1,自引:0,他引:1  
梅花‘南京红须’、‘南京红’的花色主要存在着花发育阶段导致的时间变化,反映其花色受花发育控制。二者的花色都在蕾期最浓艳,在初花期略淡,在盛花期又稍浓,在末花期最淡,尽管花瓣在花开放时便开始衰老;在整个花发育时期,同一朵花不同层次花瓣的颜色浓淡均为:外层花瓣〉中层花瓣〉内层花瓣,即花瓣在花冠中的具体排列位置决定着该片花瓣的特定颜色深浅;但不同层次花瓣颜色的变化趋势不完全一致。同时,两个品种外层花瓣的总黄酮含量变化与外层花瓣的色度变化成正相关。而花朵在树冠的着生部位导致的花色差异极不显著,表明‘南京红须’、‘南京红’的花色的空间变化极微。本文可为梅花红色花色的机理探索和花色色素生物合成关键酶基因cDNA克隆中的花朵选择提供参考。  相似文献   

4.
梅花"粉皮宫粉"花色色素的花青苷实质和花色的动态变化   总被引:6,自引:0,他引:6  
特征颜色反应和紫外-可见光谱分析初步表明梅花"粉皮宫粉"的粉红色花色色素为花青素-3-糖苷.用分光光度法检测梅花"粉皮宫粉"不同花发育时期、在树冠不同着生部位花朵花瓣的相对花青苷含量,结果表明"粉皮宫粉" 的花色主要存在着花发育时期而导致的时间变化.花色在蕾期最浓艳,花瓣展开后便逐渐变淡;在整个花发育时期,同一朵花不同层次花瓣的颜色浓淡均为外层花瓣>中层花瓣>内层花瓣,且不同层次花瓣颜色的变化趋势几乎一致.虽然树冠下部单花的花色浓于上部的、树冠内层的浓于外层的,但花朵在树冠的着生部位导致的花色差异并不显著.花青苷除了导致"粉皮宫粉"的粉红花色外,还可能增强其花的抗寒性,为花的凌寒而开创造了条件.本文可为梅花的美学鉴赏、梅花红色花色的机理探索及其色素的分子结构鉴定提供参考.  相似文献   

5.
梅花‘南京红须’、‘南京红’的花色主要存在着花发育阶段导致的时间变化,反映其花色受花发育控制。二者的花色都在蕾期最浓艳,在初花期略淡,在盛花期又稍浓,在末花期最淡,尽管花瓣在花开放时便开始衰老;在整个花发育时期,同一朵花不同层次花瓣的颜色浓淡均为:外层花瓣>中层花瓣>内层花瓣,即花瓣在花冠中的具体排列位置决定着该片花瓣的特定颜色深浅;但不同层次花瓣颜色的变化趋势不完全一致。同时,两个品种外层花瓣的总黄酮含量变化与外层花瓣的色度变化成正相关。而花朵在树冠的着生部位导致的花色差异极不显著,表明‘南京红须’、‘南京红’的花色的空间变化极微。本文可为梅花红色花色的机理探索和花色色素生物合成关键酶基因cDNA克隆中的花朵选择提供参考。  相似文献   

6.
梅花‘南京红’花色色素花色苷的分子结构   总被引:8,自引:0,他引:8  
经特殊颜色反应、纸层析、紫外 -可见光谱、高效液相色谱、气相色谱和核磁共振波谱分析表明 :梅花‘南京红’花色色素的 3种主要花色苷分别是 :花青素 3 氧 (6″ 氧 α 吡喃型鼠李糖基 β 吡喃型葡萄糖 )苷 ,花青素 3 氧 (6″ 氧 没食子酰 β 吡喃型葡萄糖 )苷和花青素 3 氧 (6″ 氧 反式阿魏酰 β 吡喃型葡萄糖 )苷。花青苷在根本上决定着‘南京红’的粉红色花色 ,并可能强化‘南京红’的耐寒能力 ,也奠定了开发和利用该种花色色素的基础。  相似文献   

7.
对穗醋栗花色苷合成的分子机理知之甚少。拟探究穗醋栗花色苷合成关键基因dfr对不同颜色醋栗花色苷的影响,以黑穗醋栗(Ribes nigrum L.)、红穗醋栗(Ribes rubrum L.)和白穗醋栗(Ribes albrum L.)果实为试材,通过RACE方法克隆二氢黄酮醇4-还原酶(dfr)基因cDNA全长序列,分别命名为Rndfr、Rrdfr和Radfr(KY786100、KY786101和KY786102)。系统发育分析表明,Rndfr、Rrdfr和Radfr在进化上具有较高的同源性。测定果实发育不同时期的花色苷含量,结果显示,黑穗醋栗和红穗醋栗花色苷含量较高且随着果实的发育成熟而逐渐增加。而白色醋栗中花色苷含量极低,几乎检测不到花色苷。定量PCR分析表明,dfr在黑穗醋栗中的表达量在果实成熟的各个时期均高于红穗和白穗醋栗。随着果实直径不断变大和果皮着色加深,在黑穗醋栗中,dfr的表达量总体呈现持续上升的趋势;在红穗醋栗中,果实着色约75%时dfr的表达量最高,之后下降;在白穗醋栗中,dfr的表达量总体呈现下降趋势,其表达量最低。推测dfr基因在醋栗果实呈色中发挥作用。  相似文献   

8.
光质对‘红富士’苹果果实着色的影响   总被引:3,自引:0,他引:3  
为探明 '红富士'苹果着色机理,试验以'红富士'苹果为试材,应用不同光质的光源对进入着色期的套袋果实进行室内离体补光和田间树冠内膛补光照射处理,对果皮花青苷、果实糖分及相关酶的活性等生理指标进行测定.试验结果表明,红光(R)照射离体套袋'红富士'苹果果实不着色,紫外光UVA(>320 nm)灼伤果实果皮而变褐色;UVB(280~320 nm)及其组合光源刺激果实PAL酶活性增加,促进糖含量增长,并使果实花青苷大量积累,促进'红富士'苹果着红色.白光对'红富士'苹果果实PAL酶活性、花青苷及糖分含量的增加也有一定促进作用,但不如UVB及其组合光源照射效果好.因此,UVB光源是'红富士'苹果着色的直接外在因子,是直接刺激'红富士'苹果着色的光信号之一.  相似文献   

9.
"彩色马铃薯"块茎花色苷分子结构研究进展   总被引:2,自引:0,他引:2  
“彩色马铃薯”是指块茎的“皮”和/或“肉”为红、紫、蓝或橙色的马铃薯,其块茎“皮”和“肉”变化多端的着色模式源于花色苷的积累,块茎各种颜色在根本上由花色素决定。在“彩色马铃薯”块茎中已发现6种花色素,即矮牵牛色素、花葵素、锦葵色素、芍药色素、花青素和花翠素;不同颜色块茎所含的花色素种类不同,同一颜色块茎所含花色素种类也可能不同;紫色块茎所含的花色素种类最为多样化。“彩色马铃薯”块茎的各种花色素一般在C3位经过氧一糖苷键实现1个芸香糖基取代,在苷元的C5位,要么以氧.糖苷键实现单葡萄糖基取代,要么不发生取代。“彩色马铃薯”块茎花色苷常在花色素C3位二糖取代基上或在C5位的单糖取代基上进一步发生反式单酰基取代,实现酰基取代的酚酸多为对香豆酸,其次为阿魏酸和咖啡酸。“彩色马铃薯”块茎矮牵牛素、锦葵色素、花葵素和芍药色素的对香豆酸酰化衍生物的惯用名分别为“petanin”,“malvanin”,“pelanin”和“peonanin”。本文可以为“彩色马铃薯”块茎颜色呈现的机理探索及其花色苷的分子结构鉴定提供参考。  相似文献   

10.
花儿缘何红与香   总被引:1,自引:1,他引:0  
一般地说 ,花冠的颜色很美丽 ,为什么花会有各种不同的颜色呢 ?花的颜色主要是由花瓣里的色素决定的。色素的种类繁多 ,其中最重要的是类黄酮和类胡萝卜素。目前 ,已发现的类胡萝卜素有 80种以上 ,不同种类的类胡萝卜素 ,有的能使花显出黄色 ,如黄玫瑰 ;有的可以使花显出红色 ,如红郁金香 ;有的可以使花显出桔红色 ,如金盏花。已鉴定出来的类黄酮有五六百种之多 ,花青素是其中的重要成员。花青素存在于花瓣细胞内 ,在酸性溶液中呈现红色 ,在碱性溶液中呈现蓝色 ,在中性溶液中呈现紫色。花色的浓淡与花青素和类胡萝卜素的含量多少有关 ,而花…  相似文献   

11.
三七是中国云南省的"第一药材",云南文山三七是三七的道地药材。三七块根的横截面为黄白色至紫色。紫色块根约占研究块根总数的28 .21 %,其中柱鞘、内皮层、皮层或表皮为紫色。特征颜色反应和紫外——可见光谱表明:三七块根紫色素属于黄酮类化合物,可能含有酚性邻位二羟基,不含类胡萝卜素、查耳酮、噢哢、异黄酮、儿茶素。花色苷和/或其苷元花色素奠定了紫色块根着色的基础,其他的非红色的黄酮类化合物起共色素的作用。块根的平均花色苷含量和平均总皂苷含量均以纯紫色块根的为最高,其次是黄紫混合色块根的,纯黄色的最低。块根的花色苷含量差异达到极显著水平,但总皂苷含量差异却没有达到显著水平。每个块根都含有不同量的花色苷,随花色苷量的增加,块根的紫色一般逐渐明显。块根的花色苷含量与其总皂苷含量之间呈显著正相关,相关系数r=0 .355。本文可为三七块根颜色呈现的机理探索及其色素的分子结构鉴定提供参考。  相似文献   

12.
白苏(Perilla ocymoides Linn.),原产中国,其叶中含有大量花色苷,以干叶计约1.9%。白苏中的花色苷是被香豆基酸与咖啡酸酰化了的氰定—3,5—双葡糖苷。由于白苏花色苷的颜色与苋菜红极为相似,所以在日本广泛用作食品添加剂。过去,一般用真空蒸馏法浓缩花色苷提取物。但是,由于天然花色苷常用强酸性溶液提取,故色素的浓缩往往因溶液内的固体物质迅速聚集,而受到影响。  相似文献   

13.
该研究以7个品种铁筷子(Helleborus thibetanus Franch.)为试验材料,借助目视测色、RHSCC比色卡、色差仪进行花色表型的测定,采用高效液相色谱法-光电二极管阵列检测方法(HPLC-DAD)及高效液相色谱-电喷雾离子化-质谱联用技术(HPLC-ESI-MS)测定分析铁筷子花瓣中花青素苷成分及含量,以探究不同品种铁筷子的花色与花青素苷成分及含量之间的关系。结果显示:(1)紫色系品种花瓣的a*值最高b*值最低,黄色系品种花瓣的b*值最高a*值最低,不同品种的铁筷子花色越深L*值越低。(2)从5个有花青素苷积累的铁筷子品种中检测出11种花青素苷成分,分别为6种矢车菊素苷,4种飞燕草素苷,1种矮牵牛素苷;供试的铁筷子材料中红色系2个品种的花青素苷含量最高,紫色系品种次之;矢车菊素苷与飞燕草素苷为影响铁筷子花瓣呈色的主要色素物质。(3)不同种类的花青素和修饰基团的差异,导致铁筷子花瓣呈现不同的色彩,含有多种酰基化修饰的飞燕草素苷使铁筷子花色蓝移进而使花色加深。(4)相关分析表明,铁筷子花瓣的L*值与a*值呈显著负相关关系,与b*值呈显著的正相关关系;L*值与总花青素苷含量呈显著负相关关系,且随着花青素苷含量的累积a*值增加,花色红移。研究表明,花青素苷的成分及含量是导致铁筷子花瓣呈现不同颜色的主要原因,矢车菊素苷和飞燕草素苷的互作以及酰基化的修饰使铁筷子呈现不同程度的紫色,花青素苷的不同累积量影响了花瓣颜色的明暗变化,从而使铁筷子花瓣颜色丰富。  相似文献   

14.
黑果枸杞中花色苷的提取与结构鉴定   总被引:2,自引:0,他引:2  
采用紫外-可见光谱法并结合高效液相色谱-电喷雾串联质谱对黑果枸杞中花色苷的组成及结构进行了鉴定。结果显示:(1)黑果枸杞花色苷在0.1%盐酸-甲醇溶液中呈紫红色表明花色苷中的主要成分可能是飞燕草色素、牵牛花色素、锦葵色素及其衍生物中的一种或几种;向提取溶液中加入5%Al Cl3甲醇溶液后无红移现象表明花色苷结构B环上无邻位酚羟基;A440nm/Aλmax比值小于20%表明该色素是3,5位均带有糖苷键的双取代花色苷;在304 nm处有一最大吸收峰表明该色素分子内含有酰基;色素水解后主要生成葡萄糖。由上述可初步推测出黑果枸杞色素中主要为酰基化的锦葵色素-3,5-二葡萄糖苷;(2)经紫外分光光度法、质谱和文献报道综合分析鉴定出黑果枸杞中含有8种花色苷,分别是:飞燕草素-3-O-葡萄糖苷、芍药素-3-O-葡萄糖苷、矮牵牛素-5-O-葡萄糖苷、矮牵牛素-3-O-(6-O-对香豆酰)芸香糖苷-5-O-葡萄糖苷、锦葵色素-3-O-(6-O-对香豆酰-3-O-乙酰)-5-O-二葡萄糖苷、飞燕草素-3-O-(6-O-乙酰)葡萄糖苷、锦葵色素-3-O-(6-O-对香豆酰)葡萄糖苷和锦葵色素-3,5-二葡萄糖苷,其含量依次为0.86%、1.17%、2.38%、11.79%、68.35%、0.63%、5.24%、9.58%。花色苷是黑果枸杞中重要的组成成分,该试验可为黑果枸杞的质量控制提供依据。  相似文献   

15.
类黄酮3',5'羟基化酶(Flavonoid-3',5'hydroxylase,F3'5'H)是花色苷代谢途径中的一个关键酶,能使花色素合成趋向于形成蓝色的飞燕草色素,从而使花色向蓝紫色偏移.本研究从蓝紫色矮牵牛(Petunia hybrida)花瓣中克隆了编码F3'5,H的蓝色基因Hf1,并通过PCR技术获得百合花特异表达启动子(PchsA),将百合PchsA与Hf1基因融合,构建了百合花特异表达启动子调控的Hf1基因植物表达载体,通过农杆菌介导的叶盘法转化粉红色矮牵牛.抗性筛选和PCR检测鉴定转基因植株,结果表明,成功地获得了转基因阳性植株.  相似文献   

16.
矮牵牛编码F3′5′H的蓝色基因表达载体构建及转化   总被引:1,自引:0,他引:1  
类黄酮3',5'羟基化酶(Flavonoid-3',5'hydroxylase,F3'5'H)是花色苷代谢途径中的一个关键酶,能使花色素合成趋向于形成蓝色的飞燕草色素,从而使花色向蓝紫色偏移.本研究从蓝紫色矮牵牛(Petunia hybrida)花瓣中克隆了编码F3'5,H的蓝色基因Hf1,并通过PCR技术获得百合花特异表达启动子(PchsA),将百合PchsA与Hf1基因融合,构建了百合花特异表达启动子调控的Hf1基因植物表达载体,通过农杆菌介导的叶盘法转化粉红色矮牵牛.抗性筛选和PCR检测鉴定转基因植株,结果表明,成功地获得了转基因阳性植株.  相似文献   

17.
郁晶晶  唐东芹  李欣 《广西植物》2020,40(5):687-695
为研究不同品种香雪兰的花色苷组成、含量及与花色表型之间的关系,阐明香雪兰花色形成机理,该研究以不同花色的香雪兰(Freesia hybrida) 11个品种为材料,采用英国皇家园艺学会比色卡(RHSCC)和色差仪进行花色描述,利用特征颜色反应初步确定色素类型,通过pH示差法测定花瓣中总花色苷的含量,进而利用UPLC-Q-TOF-MS技术分析各品种花瓣中花色苷种类和相对含量。结果表明:11个所选品种涵盖香雪兰四大色系,即白色系、黄色系、红色系、蓝紫色系;所选品种都含有黄酮类化合物,不含或含有极低量的类胡萝卜素,除‘White River’‘Fragrant Sunburst’‘Gold River’‘Tweety’外,均含有花色苷;‘Red Passion’花瓣中总花色苷含量最高,最低是‘Lovely Lavender’,其含量仅为‘Red Passion’的24%;在香雪兰花瓣中共检测出10个花色苷组分,分别为飞燕草-二葡萄糖苷、矢车菊素-二葡萄糖苷、矮牵牛素-二葡萄糖苷、飞燕草素-3-O-葡萄糖苷、矢车菊素-3-O-葡萄糖苷、芍药素-二葡萄糖苷、锦葵素-二葡萄糖苷、矮牵牛素-3-O-葡萄糖苷、芍药素-3-O-葡萄糖苷、锦葵素-3-O-葡萄糖苷;红色系品种‘Red Passion’和‘上农红台阁’花瓣中主要成分为矢车菊素类化合物,蓝紫色系品种‘Pink Passion’‘Castor’‘上农淡雪青’和‘上农紫玫瑰’花瓣中主要成分为矮牵牛素类和锦葵素类化合物,‘Lovely Lavender’花瓣仅含飞燕草素类化合物。研究表明不同品种香雪兰花瓣颜色的呈现与花色苷种类有关,花瓣着色程度则与花瓣中花色苷总含量成正比。该研究结果为新品种培育、花色改良和育种工作提供理论依据。  相似文献   

18.
金鱼总色素及色素组分的比较研究   总被引:5,自引:0,他引:5  
用色谱和光谱两种方法对金鱼总色素和色素组分进行了研究。研究结果表明,红鲫、草金鱼和红龙睛等红色金鱼总色素光谱在可见光区(472nm附近)有一个吸收峰,黑鲫和黑龙睛等黑色金鱼在可见光区(450nm和472nm附近)有两个吸收峰出现,且红色金鱼所含色素组分以红色(虾青素)为主,黑色金鱼所含色素组分以杏黄色和橙色为主,其他色素组分为辅。金鱼黑色色斑形成是由于黑色素存在时,其他各色素组分的颜色被掩盖的结果;金鱼其他各种色斑的形成则是由于其体内各色素组分以不同比例相互搭配组合的结果。亲缘关系越近的金鱼其总色素组成就越相似,红鲫和黑鲫均含有四种近乎相同的色素组分,红龙睛和黑龙睛均含有六种近乎相同的色素组分,草金鱼虽也含有四种与红鲫和黑鲫相近的色素组分,但Rf值略有差异。据此推测,红鲫和黑鲫、红龙睛和黑龙睛可能分别具有较近的亲缘关系,而草金鱼则可能是介于黑鲫和龙睛鱼之间,且与黑鲫具有较近的亲缘关系。该研究有望为金鱼增色饵料的研制与开发提供理论依据,使金鱼的观赏价值和经济价值得到进一步提高。  相似文献   

19.
以2年生'红叶'南天竹(Nandina domestica'Hongye')盆栽苗为实验材料,根据L16(45)正交实验设计进行3因素(包括氮、磷和钾肥)4水平(N单株施用量分别为0.0、18.4、36.8和55.2 mg,P2O5单株施用量分别为0.0、14.4、28.8和43.2 mg,K2 O单株施用量分别为0.0、0.8、1.6和2.4 mg)施肥实验,对2015年11月5日至2016年1月20日期间各组叶片的光合色素(包括叶绿素a、叶绿素b、总叶绿素和类胡萝卜素)、花色素苷和可溶性糖含量进行了比较;在此基础上,对叶片色素和可溶性糖含量及各肥料单株施用量进行了Pearson相关性分析.结果表明:总体来看,各组的光合色素和可溶性糖含量显著高于对照(N、P2O5和K2O单株施用量均为0.0 mg)组,而花色素苷含量则显著低于对照组.其中,T14(N、P2O5和K2O单株施用量分别为55.2、14.4和1.6 mg)、T15(N、P2O5和K2O单株施用量分别为55.2、28.8和0.8 mg)和T16(N、P2O5和K2O单株施用量分别为55.2、43.2和0.0 mg)组的光合色素含量均较高,T2(N、P2O5和K2O单株施用量分别为0.0、14.4和0.8 mg)、T3(N、P2O5和K2O单株施用量分别为0.0、28.8和1.6 mg)和T4(N、P2O5和K2O单株施用量分别为0.0、43.2和2.4 mg)组的花色素苷含量均较高,T3和T4组的可溶性糖含量均较低.极差分析结果表明:N单株施用量对光合色素含量的影响最大,K2 O单株施用量的影响最小;N单株施用量对花色素苷和可溶性糖含量的影响最大,P2 O5单株施用量的影响最小.相关性分析结果表明:N单株施用量与各光合色素含量呈极显著正相关,与可溶性糖含量呈显著正相关,与花色素苷含量呈极显著负相关;而P2O5和K2O单株施用量与上述指标的相关性均不显著.各光合色素含量间存在极显著正相关,并与可溶性糖含量呈显著正相关,与花色素苷含量呈极显著负相关.此外,花色素苷含量与可溶性糖含量呈显著负相关.研究结果显示:高氮能够延长'红叶'南天竹的绿叶期,低氮能够促进其叶片呈现红色,因此,在园林栽培过程中应根据实际需要施肥.  相似文献   

20.
答:虾蟹属甲壳纲动物,在甲壳下面的真皮层中,散布着各种颜色的色素细胞。将新鲜的虾蟹放在低倍显微镜下观察,便可以看到甲壳上有很多呈树枝状分叉的色素细胞,色素细胞中含有不同的色素,所以虾蟹身上呈现出红、黄、蓝、绿、棕、白、黑等各种颜色。虾蟹等甲壳动物体内的色素细胞的色素颗粒,能随着光线的强弱或别的环境因素的改变而扩散或集中。色素颗粒向色素细胞四周的树枝状分叉扩散时,接受光线的量大,甲壳上的颜色就变得显著;色素颗粒回缩而集中时,接受光线的量少,甲壳上的颜色就不明显了。因此,虾蟹的身体上呈现不同的颜色及…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号