首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Kramer EM  Jaramillo MA  Di Stilio VS 《Genetics》2004,166(2):1011-1023
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.  相似文献   

5.
The C function in Arabidopsis, which specifies stamen and carpel identity, is represented by a single gene called AGAMOUS (AG). From both petunia and cucumber, two MADS box genes have been isolated. Both share a high degree of amino acid sequence identity with the Arabidopsis AG protein. Their roles in specifying stamen and carpel identity have been studied by ectopic expression in petunia, resulting in plants with different floral phenotypes. Cucumber MADS box gene 1 (CUM1) induced severe homeotic transformations of sepals into carpelloid structures and petals into stamens, which is similar to ectopic AG expression in Arabidopsis plants. Overexpression of the other cucumber AG homolog, CUM10, resulted in plants with partial transformations of the petals into antheroid structures, indicating that CUM10 is also able to promote floral organ identity. From the two petunia AG homologs pMADS3 and Floral Binding Protein gene 6 (FBP6), only pMADS3 was able to induce homeotic transformations of sepals and petals. Ectopic expression of both pMADS3 and FBP6, as occurrs in the petunia homeotic mutant blind, phenocopies the pMADS3 single overexpresser plants, indicating that there is no additive effect of concerted expression. This study demonstrates that in petunia and cucumber, multiple AG homologs exist, although they differ in their ability to induce reproductive organ fate.  相似文献   

6.
The C-class MADS box gene AGAMOUS (AG) plays crucial roles in Arabidopsis thaliana development by regulating the organ identity of stamens and carpels, the repression of A-class genes, and floral meristem determinacy. To examine the conservation and diversification of C-class gene function in monocots, we analyzed two C-class genes in rice (Oryza sativa), OSMADS3 and OSMADS58, which may have arisen by gene duplication before divergence of rice and maize (Zea mays). A knockout line of OSMADS3, in which the gene is disrupted by T-DNA insertion, shows homeotic transformation of stamens into lodicules and ectopic development of lodicules in the second whorl near the palea where lodicules do not form in the wild type but carpels develop almost normally. By contrast, RNA-silenced lines of OSMADS58 develop astonishing flowers that reiterate a set of floral organs, including lodicules, stamens, and carpel-like organs, suggesting that determinacy of the floral meristem is severely affected. These results suggest that the two C-class genes have been partially subfunctionalized during rice evolution (i.e., the functions regulated by AG have been partially partitioned into two paralogous genes, OSMADS3 and OSMADS58, which were produced by a recent gene duplication event in plant evolution).  相似文献   

7.
New members of the floral organ identity AGAMOUS pathway   总被引:3,自引:0,他引:3  
The Arabidopsis floral organ identity gene AGAMOUS (AG) specifies stamen and carpel development as well as floral determinacy. Recent reports suggest that the HUA1, HUA2, HEN1 and HEN2 genes function redundantly as components of the AG pathway. The HUA1, HUA2, HEN1 and HEN2 genes encode nuclear proteins that perhaps play a role in RNA metabolism. The HUA and HEN genes function not only on the AG pathway, but also in vegetative development.  相似文献   

8.
Li J  Jia D  Chen X 《The Plant cell》2001,13(10):2269-2282
Stamen and carpel identities are specified by the combinatorial activities of several floral homeotic genes, APETALA3, PISTILLATA, AGAMOUS (AG), SEPALLATA1 (SEP1), SEPALLATA2 (SEP2), and SEPALLATA3 (SEP3), all of which code for MADS domain DNA binding proteins. AG and the SEP genes also control floral determinacy. HUA1 and HUA2 were identified previously as regulators of stamen and carpel identities and floral determinacy because the recessive hua1-1 or hua2-1 allele affected these processes in plants with a lower dosage of functional AG (either homozygous for the weak ag-4 allele or heterozygous for the strong ag-1 allele). HUA2 was cloned previously and shown to code for a novel protein. We isolated the HUA1 gene using a map-based approach and show that it encodes a protein with six CCCH-type zinc finger motifs that is also found in yeast, Caenorhabditis elegans, Drosophila melanogaster, and mammalian proteins. Several such genes from invertebrates and mammals are known to play key regulatory roles in development. Therefore, HUA1 are another example of non-MADS domain proteins involved in organ identity specification. We demonstrated that HUA1 binds ribohomopolymers, preferentially poly rU and poly rG, but not double-stranded DNA in vitro. This finding suggests that HUA1, like several mammalian CCCH zinc finger proteins, is an RNA binding protein. Therefore, HUA1 likely participates in a new regulatory mechanism governing flower development.  相似文献   

9.
In Impatiens balsamina a lack of commitment of the meristem during floral development leads to the continuous requirement for a leaf-derived floral signal. In the absence of this signal the meristem reverts to leaf production. Current models for Arabidopsis state that LEAFY (LFY) is central to the integration of floral signals and regulates flowering partly via interactions with TERMINAL FLOWER1 (TFL1) and AGAMOUS (AG). Here we describe Impatiens homologues of LFY, TFL1 and AG (IbLFY, IbTFL1 and IbAG) that are highly conserved at a sequence level and demonstrate homologous functions when expressed ectopically in transgenic Arabidopsis. We relate the expression patterns of IbTFL1 and IbAG to the control of terminal flowering and floral determinacy in Impatiens. IbTFL1 is involved in controlling the phase of the axillary meristems and is expressed in axillary shoots and axillary meristems which produce inflorescences, but not in axillary flowers. It is not involved in maintaining the terminal meristem in either an inflorescence or indeterminate state. Terminal flowering in Impatiens appears therefore to be controlled by a pathway that uses a different integration system than that regulating the development of axillary flowers and branches. The pattern of ovule production in Impatiens requires the meristem to be maintained after the production of carpels. Consistent with this morphological feature IbAG appears to specify stamen and carpel identity, but is not sufficient to specify meristem determinacy in Impatiens.  相似文献   

10.
Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.  相似文献   

11.
12.
The C-function, according to the ABC model of floral organ identity, is required for stamen and carpel development and to provide floral meristem determinacy. Members of the AG lineage of the large MADS box gene family specify the C-function in a broadly conserved manner in angiosperms. In core eudicots, two sub-lineages co-exist, euAG and PLE, which have been extensively characterized in Antirrhinum majus and Arabidopsis thaliana, where strong sub-functionalization has led to highly divergent contributions of the respective paralogs to the C-function. Various scenarios have been proposed to reconstruct the evolutionary history of the euAG and PLE lineages in eudicots, but detailed functional analyses of the roles of these genes in additional representative species to validate evolutionary hypotheses are scarce. Here, we report functional characterization of euAG- and PLE-like genes in Nicotiana benthamiana through expression analyses and phenotypic characterization of the defects caused by their specific down-regulation. We show that both paralogs redundantly contribute to the C-function in this species, providing insights on the likely evolution of these gene lineages following divergence of the major groups within the eudicots (rosids and asterids). Moreover, we have demonstrated a conserved role for the PLE-like genes in controlling fruit dehiscence, which strongly supports the ancestral role of PLE-like genes in late fruit development and suggests a common evolutionary origin of late developmental processes in dry (dehiscent) and fleshy (ripening) fruits.  相似文献   

13.
14.
The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice   总被引:2,自引:0,他引:2  
Genes that control ovule identity were first identified in Petunia. Co-suppression of both FLORAL BINDING PROTEIN 7 (FBP7) and FBP11, two D-lineage genes, resulted in the homeotic transformation of ovules into carpelloid structures. Later in Arabidopsis it was shown that three genes, SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK), redundantly control ovule identity, because in the stk shp1 shp2 triple mutant ovules lose identity and are transformed into carpel and leaf-like structures. Of these three Arabidopsis genes STK is the only D-lineage gene, and its expression, like FBP7 and FBP11, is restricted to ovules. OsMADS13 is the rice ortholog of STK, FBP7, and FBP11. Its amino acid sequence is similar to the Arabidopsis and Petunia proteins, and its expression is also restricted to ovules. We show that the osmads13 mutant is female sterile and that ovules are converted into carpelloid structures. Furthermore, making carpels inside carpels, the osmads13 flower is indeterminate, showing that OsMADS13 also has a function in floral meristem determinacy. OsMADS21 is most likely to be a paralog of OsMADS13, although its expression is not restricted to ovules. Interestingly, the osmads21 mutant did not show any obvious phenotype. Furthermore, combining the osmads13 and the osmads21 mutants did not result in any additive ovule defect, indicating that osmads21 does not control ovule identity. These results suggest that during evolution the D-lineage gene OsMADS21 has lost its ability to determine ovule identity.  相似文献   

15.
16.
17.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

18.
19.
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 ( EG1 ) gene, a putative lipase gene that specifies empty-glume fate and floral meristem determinacy. In addition to affecting the identity and number of empty glumes, mutations in EG1 caused ectopic floral organs to be formed at each organ whorl or in extra ectopic whorls. Iterative glume-like structures or new floral organ primordia were formed in the presumptive region of the carpel, resulting in an indeterminate floral meristem. EG1 is expressed strongly in inflorescence primordia and weakly in developing floral primordia. We also found that the floral meristem and organ identity gene OsLHS1 showed altered expression with respect to both pattern and levels in the eg1 mutant, and is probably responsible for the pleiotropic floral defects in eg1 . As a putative class III lipase that functionally differs from any known plant lipase, EG1 reveals a novel pathway that regulates rice empty-glume fate and spikelet development.  相似文献   

20.
Screening for mutations that alter flower development in Arabidopsis has led to the identification of two general types of genetic loci: those affecting meristem and organ identity, and those affecting growth and development independent of identity. ettin (ett) mutants belong to the latter class and exhibit pleiotropic phenotypes distinct from previously described Arabidopsis mutants. These phenotypes include increases in sepal and petal number, decreases in stamen number and anther locule number, and gross alteration of tissue patterning in the gynoecium. To determine when and how differences in ett floral meristems originate, flower development was compared between the wild type and ett mutants. ett floral meristems exhibit increases in abaxial sepal and petal primordia number without apparent increases in meristem size. Extra sepal and petal primordia develop into normal organs. In contrast, stamen and carpel primordia exhibit alterations in shape and form, subsequent to premature elongation of the terminal floral meristem. Phenotypes are allele-strength dependent. The stigma develops precociously and style differentiation is basally and abaxially misplaced in ett gynoecia. The data are discussed in the context of a model suggesting that two concentric boundaries specify the apical-basal pattern of gynoecium differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号