首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang L  Xi D  Li S  Gao Z  Zhao S  Shi J  Wu C  Guo X 《Plant molecular biology》2011,77(1-2):17-31
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.  相似文献   

2.
3.
Wi SJ  Ji NR  Park KY 《Plant physiology》2012,159(1):251-265
We observed the biphasic production of ethylene and reactive oxygen species (ROS) in susceptible tobacco (Nicotiana tabacum 'Wisconsin 38') plants after shoot inoculation with Phytophthora parasitica var nicotianae. The initial transient increase in ROS and ethylene at 1 and 3 h (phase I), respectively, was followed by a second massive increase at 48 and 72 h (phase II), respectively, after pathogen inoculation. This biphasic pattern of ROS production significantly differed from the hypersensitive response exhibited by cryptogein-treated wild-type tobacco plants. The biphasic increase in ROS production was mediated by both NADPH oxidase isoforms, respiratory burst oxidase homolog (Rboh) D and RbohF. Conversely, different 1-aminocyclopropane-1-carboxylic acid synthase members were involved in specific phases of ethylene production: NtACS4 in the first phase and NtACS1 in the second phase. Biphasic production of ROS was inhibited in transgenic antisense plant lines expressing 1-aminocyclopropane-1-carboxylic acid synthase/oxidase or ethylene-insensitive3 as well as in transgenic plants impaired in ROS production. All tested transgenic plants were more tolerant against P. parasitica var nicotianae infection as determined based on trypan blue staining and pathogen proliferation. Further, silencing of NtACS4 blocked the second massive increase in ROS production as well as pathogen progression. Pathogen tolerance was due to the inhibition of ROS and ethylene production, which further resulted in lower activation of ROS-detoxifying enzymes. Accordingly, the synergistic inhibition of the second phase of ROS and ethylene production had protective effects against pathogen-induced cell damage. We conclude that the levels of ethylene and ROS correlate with compatible P. parasitica proliferation in susceptible plants.  相似文献   

4.
Luo J  Zhao LL  Gong SY  Sun X  Li P  Qin LX  Zhou Y  Xu WL  Li XB 《遗传学报》2011,38(11):557-565
The mitogen-activated protein kinase (MAPK) cascade is one of the major and evolutionally conserved signaling pathways and plays a pivotal role in the regulation of stress and developmental signals in plants.Here,we identified one gene,GhMPK6,encoding an MAPK protein in cotton.GFP fluorescence assay demonstrated that GhMAPK6 is a cytoplasm localized protein.Quantitative RT-PCR analysis revealed that mRNA accumulation of GhMPK6 was significantly promoted by abscisic acid (ABA).Overexpression of GhMPK6 gene in the T-DNA insertion mutant atmkkl (SALK_015914) conferred a wild-type phenotype to the transgenic plants in response to ABA.Under ABA treatment,cotyledon greening/expansion in GhMPK6 transgenic lines and wild type was significantly inhibited,whereas the atmkkl mutant showed a relatively high cotyledon greening/expansion ratio.Furthermore,CAT1 expression and H2O2 levels in leaves of GhMPK6 transgenic lines and wild type were remarkably higher than those of atmkkl mutant with ABA treatment.Collectively,our results suggested that GhMPK6 may play an important role in ABA-induced CAT1 expression and H2O2 production.  相似文献   

5.
6.
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes from plant growth and development to biotic and abiotic stress responses. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), play crucial roles in MAPK cascades to mediate a variety of stress responses in plants. However, few MAPKKs have been functionally characterized in cotton (Gossypium hirsutum). In this study, a novel gene, GhMKK5, from cotton belonging to the group C MAPKKs was isolated and characterized. The expression of GhMKK5 can be induced by pathogen infection, abiotic stresses, and multiple defence-related signal molecules. The overexpression of GhMKK5 in Nicotiana benthamiana enhanced the plants' resistance to the bacterial pathogen Ralstonia solanacearum by elevating the expression of pathogen resistance (PR) genes, including PR1a, PR2, PR4, PR5, and NPR1, but increased the plants' sensitivity to the oomycete pathogen Phytophthora parasitica var. nicotianae Tucker. Importantly, GhMKK5-overexpressing plants displayed markedly elevated expression of reactive oxygen species-related and cell death marker genes, such as NtRbohA and NtCDM, and resulted in hypersensitive response (HR)-like cell death characterized by the accumulation of H(2)O(2). Furthermore, it was demonstrated that GhMKK5 overexpression in plants reduced their tolerance to salt and drought stresses, as determined by statistical analysis of seed germination, root length, leaf water loss, and survival rate. Drought obviously accelerated the cell death phenomenon in GhMKK5-overexpressing plants. These results suggest that GhMKK5 may play an important role in pathogen infection and the regulation of the salt and drought stress responses in plants.  相似文献   

7.
Liu Y  Zhang S 《The Plant cell》2004,16(12):3386-3399
Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we demonstrated that the activation of SIPK, a tobacco (Nicotiana tabacum) stress-responsive MAPK, induces the biosynthesis of ethylene. Here, we report that MPK6, the Arabidopsis thaliana ortholog of tobacco SIPK, is required for ethylene induction in this transgenic system. Furthermore, we found that selected isoforms of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), the rate-limiting enzyme of ethylene biosynthesis, are substrates of MPK6. Phosphorylation of ACS2 and ACS6 by MPK6 leads to the accumulation of ACS protein and, thus, elevated levels of cellular ACS activity and ethylene production. Expression of ACS6(DDD), a gain-of-function ACS6 mutant that mimics the phosphorylated form of ACS6, confers constitutive ethylene production and ethylene-induced phenotypes. Increasing numbers of stress stimuli have been shown to activate Arabidopsis MPK6 or its orthologs in other plant species. The identification of the first plant MAPK substrate in this report reveals one mechanism by which MPK6/SIPK regulates plant stress responses. Equally important, this study uncovers a signaling pathway that modulates the biosynthesis of ethylene, an important plant hormone, in plants under stress.  相似文献   

8.
9.
10.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. Cotton (Gossypium hirsutum) is the most important textile crop in the world, and often encounters abiotic stress during its growth seasons. In this study, a gene encoding a mitogen-activated protein kinase (MAPK) was isolated from cotton, and designated as GhMPK17. The open reading frame (ORF) of GhMPK17 gene is 1494 bp in length and encodes a protein with 497 amino acids. Quantitative RT-PCR analysis indicated that GhMPK17 expression was up-regulated in cotton under NaCl, mannitol and ABA treatments. The transgenic Arabidopsis plants expressing GhMPK17 gene showed higher seed germination, root elongation and cotyledon greening/expansion rates than those of the wild type on MS medium containing NaCl, mannitol and exogenous ABA, suggesting that overexpression of GhMPK17 in Arabidopsis increased plant ABA-insensitivity, and enhanced plant tolerance to salt and osmotic stresses. Furthermore, overexpression of GhMPK17 in Arabidopsis reduced H2O2 level and altered expression of ABA- and abiotic stress-related genes in the transgenic plants. Collectively, these data suggested that GhMPK17 gene may be involved in plant response to high salinity and osmotic stresses and ABA signaling.  相似文献   

11.
Wi SJ  Park KY 《Molecules and cells》2002,13(2):209-220
The amount of polyamines (such as putrescine, spermidine, and spermine) increased under environmental stress conditions. We used transgenic technology in an attempt to evaluate their potential for mitigating the adverse effects of several abiotic stresses in plants. Because there is a metabolic competition for S-adenosylmethionine as a precursor between polyamine (PA) and ethylene biosyntheses, it was expected that the antisense-expression of ethylene biosynthetic genes could result in an increase in PA biosynthesis. Antisense constructs of cDNAs for senescence-related 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (CAS) and ACC oxidase (CAO) were isolated from carnation flowers that were introduced into tobacco by Agrobacterium-mediated transformation. Several transgenic lines showed higher PA contents than wild-type plants. The number and weight of seeds also increased. Stress-induced senescence was attenuated in these transgenic plants in terms of total chlorophyll loss and phenotypic changes after oxidative stress with hydrogen peroxide (H2O2), high salinity, acid stress (pH 3.0), and ABA treatment. These results suggest that the transgenic plants with antisense CAS and CAO cDNAs are more tolerant to abiotic stresses than wild-type plants. This shows a positive correlation between PA content and stress tolerance in plants.  相似文献   

12.
13.
14.
15.
Pan J  Zhang M  Kong X  Xing X  Liu Y  Zhou Y  Liu Y  Sun L  Li D 《Planta》2012,235(4):661-676
  相似文献   

16.
Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.  相似文献   

17.
Plants, in common with all organisms, have evolved mechanisms to cope with the problems caused by high temperatures. We examined specifically the involvement of calcium, abscisic acid (ABA), ethylene, and salicylic acid (SA) in the protection against heat-induced oxidative damage in Arabidopsis. Heat caused increased thiobarbituric acid reactive substance levels (an indicator of oxidative damage to membranes) and reduced survival. Both effects required light and were reduced in plants that had acquired thermotolerance through a mild heat pretreatment. Calcium channel blockers and calmodulin inhibitors increased these effects of heating and added calcium reversed them, implying that protection against heat-induced oxidative damage in Arabidopsis requires calcium and calmodulin. Similar to calcium, SA, 1-aminocyclopropane-1-carboxylic acid (a precursor to ethylene), and ABA added to plants protected them from heat-induced oxidative damage. In addition, the ethylene-insensitive mutant etr-1, the ABA-insensitive mutant abi-1, and a transgenic line expressing nahG (consequently inhibited in SA production) showed increased susceptibility to heat. These data suggest that protection against heat-induced oxidative damage in Arabidopsis also involves ethylene, ABA, and SA. Real time measurements of cytosolic calcium levels during heating in Arabidopsis detected no increases in response to heat per se, but showed transient elevations in response to recovery from heating. The magnitude of these calcium peaks was greater in thermotolerant plants, implying that these calcium signals might play a role in mediating the effects of acquired thermotolerance. Calcium channel blockers and calmodulin inhibitors added solely during the recovery phase suggest that this role for calcium is in protecting against oxidative damage specifically during/after recovery.  相似文献   

18.
Cao WH  Liu J  He XJ  Mu RL  Zhou HL  Chen SY  Zhang JS 《Plant physiology》2007,143(2):707-719
  相似文献   

19.
Ethylene has been regarded as a stress hormone involved in many stress responses. However, ethylene receptors have not been studied for the roles they played under salt stress condition. Previously, we characterized an ethylene receptor gene NTHK1 from tobacco, and found that NTHK1 is salt-inducible. Here, we report a further investigation towards the function of NTHK1 in response to salt stress by using a transgenic approach. We found that NTHK1 promotes leaf growth in the transgenic tobacco seedlings but affects salt sensitivity in these transgenic seedlings under salt stress condition. Differential Na+/K+ ratio was observed in the control Xanthi and NTHK1-transgenic plants after salt stress treatment. We further found that the NTHK1 transgene is also salt-inducible in the transgenic plants, and the higher NTHK1 expression results in early inductions of the ACC (1-aminocyclopropane-1-carboxylic acid) oxidase gene NtACO3 and ethylene responsive factor (ERF) genes NtERF1 and NtERF4 under salt stress. However, NTHK1 suppresses the salt-inducible expression of the ACC synthase gene NtACS1. These results indicate that NTHK1 regulates salt stress responses by affecting ion accumulation and related gene expressions, and hence have significance in elucidation of ethylene receptor functions during stress signal transduction.  相似文献   

20.
Liu H  Wang X  Zhang H  Yang Y  Ge X  Song F 《Gene》2008,420(1):57-65
Serine carboxypeptidase-like proteins (SCPLs) comprise a large family of protein hydrolyzing enzymes that play roles in multiple cellular processes. During the course of study aimed at elucidating the molecular basis of induced immunity in rice, a gene, OsBISCPL1, encoding a putative SCPL, was isolated and identified. OsBISCPL1 contains a conserved peptidase S10 domain, serine active site and a signal peptide at N-terminus. OsBISCPL1 is expressed ubiquitously in rice, including roots, stems, leaves and spikes. Expression of OsBISCPL1 in leaves was significantly up-regulated after treatments with benzothiadiazole, salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid, and also up-regulated in incompatible interactions between rice and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants with constitutive expression of OsBISCPL1 were generated and disease resistance assays indicated that the OsBISCPL1-overexpressing plants showed an enhanced disease resistance against Pseudomonas syringae pv. tomato and Alternaria brassicicola. Expression levels of defense-related genes, e.g. PR1, PR2, PR5 and PDF1.2, were constitutively up-regulated in transgenic plants as compared with those in wild-type plants. Furthermore, the OsBISCPL1-overexpressing plants also showed an increased tolerance to oxidative stress and up-regulated expression of oxidative stress-related genes. The results suggest that the OsBISCPL1 may be involved in regulation of defense responses against pathogen infection and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号