首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mechanical stimulation is considered to be one of the major epigenetic factors regulating the metabolism, proliferation, survival and differentiation of cells in the skeletal tissues. It is generally accepted that the cytoskeleton can undergo remodeling in response to mechanical stimuli such as tensile strain or fluid flow. Mechanically induced cell deformation is one of the possible mechanotransduction pathways by which chondrocytes sense and respond to changes in their mechanical environment. Mechanical strain has a variety of effects on the structure and function of their cells in the skeletal tissues, such as chondrocytes, osteoblasts and fibroblasts. However, little is known about the effect of the quality and quantity of mechanical strain and the timing of mechanical loading on the differentiation of these cells. The present study was designed to investigate the effect of the deformation of chondrogenic cells, and cyclic compression using a newly developed culture device, by analyzing mechanobiological response to the differentiating chondrocytes. Cyclic compression between 0 and 22% strains, at 23 microHz was loaded on chondrogenic cell line ATDC5 by seeding in a mass mode on PDMS membrane, assuming direct transfer of cyclic deformation from the membrane to the cells at the same frequency. The compressive strain, induced within the membrane, was characterized based on the analysis of the finite element modeling (FEM). The results showed that the tensile strain inhibits the chondrogenic differentiation of ATDC5 cells, whereas the compressive strain enhances the chondrogenic differentiation, suggesting that the differentiation of the chondrogenic cells could be controlled by the amount and the mode of strain. In conclusion, we have developed a unique strain loading culture system to analyze the effect of various types of mechanical stimulation on various cellular activities.  相似文献   

3.
High-density cell culture is pivotal for the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). Two high-density cell culture systems, micromass and pellet culture, have been used to induce chondrogenic differentiation of hMSCs. In micromass culture, the induced-cartilage tissues were larger, more homogenous and enriched in cartilage-specific collagen II but the fibrocartilage-like feature, collagen I, and hypertrophic chondrocyte feature, collagen X, were markedly decreased compared to those in pellet culture. Furthermore, real time RT-PCR analysis demonstrated that collagen II and aggrecan mRNA were up-regulated while collagen X and collagen I mRNA were down-regulated in micromass culture. Thus, the micromass culture system is a promising tool for in vitro chondrogenic studies.  相似文献   

4.
Gap junctional communication during limb cartilage differentiation   总被引:4,自引:0,他引:4  
The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.  相似文献   

5.
The bones of the vertebrate limb form by the process of endochondral ossification, whereby limb mesenchyme condenses to form an intermediate cartilage scaffold that is then replaced by bone. Although Indian hedgehog (IHH) is known to control hypertophic differentiation of chondrocytes during this process, the role of hedgehog signaling in the earlier stages of chondrogenesis is less clear. We have conditionally inactivated the hedgehog receptor Ptc1 in undifferentiated limb mesenchyme of the mouse limb using Prx1-Cre, thus inducing constitutively active ligand-independent hedgehog signaling. In addition to major patterning defects, we observed a marked disruption to the cartilage elements in the limbs of Prx1-Cre:Ptc1c/c embryos. Using an in vitro micromass culture system we show that this defect lies downstream of mesenchymal cell condensation and likely upstream of chondrocyte differentiation. Despite early increases in levels of chondrogenic genes, soon after mesenchymal condensation the stromal layer of Prx1-Cre:Ptc1c/c-derived micromass cultures is characterized by a loss of cell integrity, which is associated with increased cell death and a striking decrease in Alcian blue staining cartilage nodules. Furthermore, inhibition of the hedgehog pathway activation using cyclopamine was sufficient to essentially overcome this chondrogenic defect in both micromass and ex vivo explant assays of Prx1-Cre:Ptc1c/c limbs. These data demonstrate for the first time the inhibitory effect of cell autonomously activated hedgehog signaling on chondrogenesis, and stress the importance of PTC1 in maintaining strict control of signaling levels during this phase of skeletal development.  相似文献   

6.
Undifferentiated mesenchymal cells in the limb bud integrate a complex array of local and systemic signals during the process of cell condensation and chondrogenic differentiation. To address the relationship between bone morphogenetic protein (BMP) signaling and gap junction-mediated intercellular communication, we examined the effects of BMP-2 and a gap junction blocker 18 alpha glycyrrhetinic acid (18alpha-GCA) on mesenchymal cell condensation and chondrogenic differentiation in an in vitro chondrogenic model. We find that connexin43 protein expression significantly correlates with early mesenchymal cellular condensation and chondrogenesis in high-density limb bud cell culture. The level of connexin43 mRNA is maximally upregulated 48 h after treatment with recombinant human BMP-2 with corresponding changes in protein expression. Inhibition of gap junction-mediated intercellular communication with 2.5 microM 18alpha-GCA decreases chondrogenic differentiation by 50% at 96 h without effects on housekeeping genes. Exposure to 18alpha-GCA for only the first 24-48 h after plating does not affect condensation or later chondrogenic differentiation suggesting that gap junction-mediated intercellular communication is not critical for the initial phase of condensation but is important for the onset of differentiation. 18alpha-GCA can also block the chondrogenic effects of BMP-2 without effects on cell number or connexin43 expression. These observations demonstrate 18alpha-GCA-sensitive regulation of intercellular communication in limb mesenchymal cells undergoing chondrogenic differentiation and suggest that BMP-2 induced chondrogenic differentiation may be mediated in part through the modulation of connexin43 expression and gap junction-mediated intercellular communication.  相似文献   

7.
Human mesenchymal stem cells (hMSCs) derived from bone marrow have the capacity to differentiate along a number of connective tissue pathways and are an attractive source of chondrocyte precursor cells. When these cells are cultured in a three-dimensional format in the presence of transforming growth factor-beta, they undergo characteristic morphological changes concurrent with deposition of cartilaginous extracellular matrix (ECM). In this study, factors influencing hMSC chondrogenesis were investigated using an alginate layer culture system. Application of this system resulted in a more homogeneous and rapid synthesis of cartilaginous ECM than did micromass cultures and presented a more functional format than did alginate bead cultures. Differentiation was found to be dependent on initial cell seeding density and was interrelated to cellular proliferation. Maximal glycosaminoglycan (GAG) synthesis defined an optimal hMSC seeding density for chondrogenesis at 25 x 10(6) cells/ml. Inclusion of hyaluronan in the alginate layer at the initiation of cultures enhanced chondrogenic differentiation in a dose-dependent manner, with maximal effect seen at 100 microg/ml. Hyaluronan increased GAG synthesis at early time points, with greater effect seen at lower cell densities, signifying cell-cell contact involvement. This culture system offers additional opportunities for elucidating conditions influencing chondrogenesis and for modeling cartilage homeostasis or osteoarthritic changes.  相似文献   

8.
Endochondral skeletal development involves the condensation of mesenchymal cells, their differentiation into chondrocytes, followed by chondrocyte maturation, hypertrophy, and matrix mineralization, and replacement by osteoblasts. The Wnt family of secreted proteins have been shown to play important roles in vertebrate limb formation. To examine the role(s) of Wnt members and their transmembrane-spanning receptor(s), Frizzled (fz), we retrovirally misexpressed Wnt-5a, Wnt-7a, chicken frizzled-1 (Chfz-1), and frizzled-7 (Chfz-7) in long-term (21 day) high density, micromass cultures of stage 23/24 chick embryonic limb mesenchyme. This culture system recapitulates in vitro the entire differentiation (days 1-10), growth (days 5-12), and maturation and hypertrophy (from day 12 on) program of cartilage development. Wnt-7a misexpression severely inhibited chondrogenesis from day 7 onward. Wnt-5a misexpression resulted in a poor hypertrophic phenotype by day 14. Chfz-7 misexpression caused a slight delay of chondrocyte maturation based on histology, whereas Chfz-1 misexpression did not affect the chondrogenic phenotype. Misexpression of all Wnt members decreased collagen type X expression and alkaline phosphatase activity at day 21. Our findings implicate functional role(s) for Wnt signaling throughout embryonic cartilage development, and show the utility of the long-term in vitro limb mesenchyme culture system for such studies.  相似文献   

9.
In developing limb bud, mesenchymal cells form cellular aggregates called "mesenchymal condensations". These condensations show the prepattern of skeletal elements of the limb prior to cartilage differentiation. Roles of various signaling molecules in chondrogenesis in the limb bud have been reported. One group of signaling factors includes the Wnt proteins, which have been shown to have an inhibitory effect on chondrogenesis in the limb bud. Therefore, regulation of Wnt activity may be important in regulating cartilage differentiation. Here we show that Frzb-1, which encodes a secreted frizzled-related protein that can bind to Wnt proteins and can antagonize the activity of some Wnts, is expressed in the developing limb bud. At early stages of limb development, Frzb-1 is expressed in the ventral core mesenchyme of the limb bud, and later Frzb-1 expression becomes restricted to the central core region where mesenchymal condensations occur. At these stages, a chondrogenic marker gene, aggrecan, is not yet expressed. As limb development proceeds, expression of Frzb-1 is detected in cartilage primordial cells, although ultimately Frzb-1 expression is down-regulated. Similar results were obtained in the recombinant limb bud, which was constructed from dissociated and re-aggregated mesenchymal cells and an ectodermal jacket with the apical ectodermal ridge. In addition, Frzb-1 expression preceded aggrecan expression in micromass cultures. These results suggest that Frzb-1 has a role in condensation formation and cartilage differentiation by regulating Wnt activity in the limb bud.  相似文献   

10.
11.
Adhesive signaling plays a key role in cellular differentiation, including in chondrogenesis. Herein, we probe the contribution to early chondrogenesis of two key modulators of adhesion, namely focal adhesion kinase (FAK)/Src and CCN2 (connective tissue growth factor, CTGF). We use the micromass model of chondrogenesis to show that FAK/Src signaling, which mediates cell/matrix attachment, suppresses early chondrogenesis, including the induction of Ccn2, Agc, and Sox6. The FAK/Src inhibitor PP2 elevates Ccn2, Agc, and Sox6 expression in wild-type mesenchymal cells in micromass culture, but not in cells lacking CCN2. Our results suggest a reduction in FAK/Src signaling is a critical feature permitting chondrogenic differentiation and that CCN2 operates downstream of this loss to promote chondrogenesis.  相似文献   

12.
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor.  相似文献   

13.
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self‐repair. Because of their unlimited capacity for self‐renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF‐β1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC‐derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC‐derived progenitors in different phases of the chondrogenic lineage for cartilage repair. J. Cell. Physiol. 224: 664–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Perlecan (Pln) is an abundant heparan sulfate (HS) proteoglycan in the pericellular matrix of developing cartilage, and its absence dramatically disrupts endochondral bone formation. This study examined two previously unexamined aspects of the function of Pln in mesenchymal chondrogenesis in vitro. Using the well-established high-density micromass model of chondrogenic differentiation, we first examined the requirement for endogenous Pln synthesis and secretion through the use of Pln-targeted ribozymes in murine C3H10T1/2 embryonic fibroblasts. Second, we examined the ability of the unique N-terminal, HS-bearing Pln domain I (PlnDI) to synergize with exogenous bone morphogenetic protein-2 (BMP-2) to support later stage chondrogenic maturation of cellular condensations. The results provide clear evidence that the function of Pln in late stage chondrogenesis requires Pln biosynthesis and secretion, because 60%-70% reductions in Pln greatly diminish chondrogenic marker expression in micromass culture. Additionally, these data support the idea that while early chondrocyte differentiation can be supported by exogenous HS-decorated PlnDI, efficient late stage PlnDI-supported chondrogenesis requires both BMP-2 and Pln biosynthesis.  相似文献   

15.
Undifferentiated connective tissue that arises during embryonic development and some healing processes contains pluripotent mesenchymal stem cells. It is becoming increasingly evident that the mechanical environment is an important differentiation factor for these cells. In our laboratory, we have focused on the potential for mechanical signals to induce chondrogenic differentiation of mesenchymal stem cells. Using C3H10T1/2 cells as a model, we have investigated the influence of hydrostatic pressure, equibiaxial contraction, and centrifugal pressure on chondroinduction. Cells responded to cyclic hydrostatic compression (5 MPa at 1 Hz) and cyclic contractile strain (15% at 1 Hz) by upregulating aggrecan and collagen type II gene expression. In addition, a preliminary study of the effects of centrifugal pressure (4.1 MPa for 30 min) suggests that it may increase cell proliferation and stimulate proteoglycan and collagen type II production. We speculate that compression, whether it is distortional or hydrostatic in nature, applied to undifferentiated connective tissue triggers differentiation toward a chondrocyte-like phenotype and production of a less permeable extracellular matrix which is capable of sustaining increasingly higher hydrostatic fluid pressure for compressive load support.  相似文献   

16.
Summary To study the mechanisms regulating endochondral skeletal development, we examined the characteristics of long-term, high density micromass cultures of embryonic chicken limb bud mesenchymal cells. By culture Day 3, these cells underwent distinct chondrogenesis, evidenced by cellular condensation to form large nodules exhibiting cartilage-like morphology and extracellular matrix. By Day 14, extensive cellular hypertrophy was seen in the core of the nodules, accompanied by increased alkaline phosphatase activity, and the limitation of cellular proliferation to the periphery of the nodules and to internodular areas. By Day 14, matrix calcification was detected by alizarin red staining, and calcium incorporation increased as a function of culture time up to 2 to 3 wk and then decreased. X-ray probe elemental analysis detected the presence of hydroxyapatite. Analogous to growth cartilage developing in vivo, these cultures also exhibited time-dependent apoptosis, on the basis of DNA fragmentation detected in situ by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), ultrastructural nuclear morphology, and the appearance of internucleosomal DNA degradation. These findings showed that cellular differentiation, maturation, hypertrophy, calcification, and apoptosis occurred sequentially in the embryonic limb mesenchyme micromass cultures and indicate their utility as a convenient in vitro model to investigate the regulatory mechanisms of endochondral ossification.  相似文献   

17.
AMDM, a form of osteochondrodysplasia, is due to the loss-of-function mutations in NPR-B gene. This study investigated the functional involvement of CNP-3, chick homolog of human CNP, and its receptor NPR-B in chondrogenesis utilizing the micromass culture of the chick limb mesenchymal cells. Results revealed CNP-3 and NPR-B expression in the chick limb bud making stage-specific peak levels first at Hamburger-Hamilton stage 23-24, and second at stage 30-31, corresponding to pre-chondrogenic mesenchymal condensation and initiation of chondrogenic maturation-hypertrophy in vivo, respectively. CNP-3 and NPR-B expression in vitro increased parallel to collagen type X expression, but not to that of collagen type II. Treatment of cultures with CNP significantly increased N-cadherin, and collagen type X expression, glycosaminoglycan synthesis and chondrogenesis. Collagen type II expression was not significantly affected. Thus, results implicated CNP-3/NPR-B signaling in pre-chondrogenic mesenchymal condensation, glycosaminoglycan synthesis and late differentiation of chondrocytes in the process of endochondral ossification.  相似文献   

18.
Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.  相似文献   

19.
This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.  相似文献   

20.
One of the earliest events in bone morphogenesis is the condensation of embryonic mesenchymal cells into chondroblasts and their subsequent proliferation and differentiation into chondrocytes. During this time, certain signaling cascades operate to establish proper patterning and differentiation of the cartilaginous skeleton. Characterization of the signaling pathways involved in these processes remains to be accomplished. We have identified a novel murine cytosolic tyrosine phosphatase termed PTPPBS gamma (+/-) which is a member of the PTP PC12,Br7,Sl (PTPPBS) family. Spatio-temporal expression analysis of the members of this tyrosine phosphatase family demonstrates significant expression of the gamma (-) splice variant in the cartilaginous skeleton. Using an embryonic mandibular explant culture system to serve as a model for cartilage formation, we examined the potential roles of the PTPPBS gamma phosphatase by loss-of-function studies achieved with antisense oligodeoxynucleotides. These studies demonstrated that loss of expression of the PTPPBS gamma (-) isoform resulted in abnormal patterning of Meckel's cartilage and an increase in the size of the chondrogenic regions. In gamma antisense-treated explants, bromodeoxyuridine-pulse labeling studies revealed increased proliferation of chondroblasts bordering along precartilaginous condensations and bordering populations of maturing chondrocytes. These studies provide evidence that in early skeletal development, PTPPBS gamma may regulate the rate of chondroblast proliferation in the cartilaginous skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号