首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Gap junctional communication during limb cartilage differentiation   总被引:4,自引:0,他引:4  
The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.  相似文献   

3.
Differences are demonstrated in the chondrogenic potential of cells derived from the distal and proximal halves of chick wing buds from as early as stage 23, prior to the appearance of overt cartilage differentiation. In high cell density cultures, cells obtained from the distal portions of stage 23 or 24 limb buds are spontaneously chondrogenic in micromass cultures. Cells obtained from the proximal portions, however, become blocked in their differentiation as protodifferentiated cartilage cels, since these cells in micromass cultures make detectable type II collagen, but fail to synthesize significant levels of cartilage proteoglycan or to accumulate an extracellular matrix that will stain for sulfated glycosaminoglycans. Such cultures of proximal limb bud cells can be stimulated to form alcian blue staining nodules by the addition of 1 mM dbcAMP or 50 micrograms/ml ascorbate, or by mixing proximal cells with small numbers of distal cells (1 distal cell to 10 proximal cells). These results demonstrate the existence of two distinct stages among prechondrogenic mesenchyme cells. The earlier stage appears to be able to provide a chondrogenic stimulus to proximal cells.  相似文献   

4.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

5.
Chondrogenesis of mesenchymal cells from the frontonasal mass, mandibles and maxillae of stage-24 chick embryos has been investigated in micromass (high-density) cultures. Distinct differences in the amount and pattern of cartilage differentiation are found. In cultures of frontonasal mass cells, a central sheet of cartilage develops; in cultures of mandible cells, less cartilage differentiates and nodules form; while in cultures of maxillae cells, virtually no chondrogenesis takes place. The same patterns of cartilage are found in cultures established from stage-20 embryos. At stage 28, frontonasal mass cultures form cartilage nodules and the number of nodules in mandible cultures is markedly decreased. There are striking parallels between the chondrogenic patterns of cells from the face and limb buds in micromass culture. The frontonasal mass cell cultures of stage-20 and -24 chick embryos resemble those established from the progress zone of limb buds. The progress zone is an undifferentiated region of the limb in which positional cues operate. Cultures established from the frontonasal mass of stage-28 chick embryos and from the mandibles of all stages resemble cultures of whole limb buds. These contain a mixture of committed and uncommitted cells. Ectoderm from facial primordia locally inhibits chondrogenesis in micromass cultures and this could provide a positional cue. The differences in chondrogenic potential of cells from facial primordia may underlie the specific retinoid effects on the frontonasal mass.  相似文献   

6.
Studies of neural, hepatic, and other cells have demonstrated thatin vitroethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformitiesin vivo,prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23–25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant ofin vitrochondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in35SO4incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol onin vitrochondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.  相似文献   

7.
《The Journal of cell biology》1984,99(5):1856-1866
We have addressed the problem of the segregation of cell lineages during the development of cartilage and muscle in the chick limb bud. The following experiments demonstrate that early limb buds consist of at least two independent subpopulations of committed precursor cells-- those in (a) the myogenic and (b) the chondrogenic lineage--which can be physically separated. Cells obtained from stage 20, 21, and 22 limb buds were cultured for 5 h in the presence of a monoclonal antibody that was originally isolated for its ability to detach preferentially myogenic cells from extracellular matrices. The detached limb bud cells were collected and replated in normal medium. Within 2 d nearly all of the replated cells had differentiated into myoblasts and myotubes; no chondroblasts differentiated in these cultures. In contrast, the original adherent population that remained after the antibody-induced detachment of the myogenic cells differentiated largely into cartilage and was devoid of muscle. Rearing the antibody-detached cells (i.e., replicating myogenic precursors and postmitotic myoblasts) in medium known to promote chondrogenesis did not induce these cells to chondrify. Conversely, rearing the attached precursor cells (i.e., chondrogenic precursors) in medium known to promote myogenesis did not induce these cells to undergo myogenesis. The definitive mononucleated myoblasts and multinucleated myotubes were identified by muscle- specific antibodies against light meromyosin or desmin, whereas the definitive chondroblasts were identified by a monoclonal antibody against the keratan sulfate chains of the cartilage-specific sulfated proteoglycan. These findings are interpreted as supporting the lineage hypothesis in which the differentiation program of a cell is determined by means of transit through compartments of a lineage.  相似文献   

8.
Mesenchymal stem cells (MSC) have the potential to differentiate into distinct mesenchymal tissues including cartilage, which suggest these cells as an attractive cell source for cartilage tissue engineering approaches. Our objective was to study the effects of TGF-beta1, hyaluronic acid and synovial fluid on chondrogenic differentiation of equine MSC. For that, bone marrow was aspirated from the tibia of one 18-month-old horse (Haflinger) and MSC were isolated using percoll-density centrifugation. To promote chondrogenesis, MSC were centrifuged to form a micromass and were cultured in a medium containing 10 ng/ml TGF-beta1 or 0.1mg/ml hyaluronic acid (Hylartil, Ostenil) or either 5%, 10% or 50% autologous synovial fluid as the chondrogenesis inducing factor. Differentiation along the chondrogenic lineage was documented by type II collagen and proteoglycan expression. MSC induced by TGF-beta1 alone showed the highest proteoglycan expression. Combining TGF-beta1 with hyaluronic acid could not increase the proteoglycan expression. Cultures stimulated by autologous synovial fluid (independent of concentration) and hyaluronic acid demonstrated a pronounced, but lower proteoglycan expression than cultures stimulated by TGF-beta1. The expression of cartilage-specific type II collagen was high and about the same in all stimulated cultures. In summary, hyaluronic acid and autologous synovial fluid induces chondrogenesis of equine mesenchymal stem cells, which encourage tissue engineering applications of MSC in chondral defects, as the natural environment in the joint is favorable for chondrogenic differentiation.  相似文献   

9.
The effect of developmental stage on chondrogenic capacity in high-density cell cultures of chick embryonic wing bud mesenchyme is examined. Mesenchyme from stage 19 embryos forms aggregates of closely associated cells which do not form cartilage matrix, nor contain significant levels of type II collagen that are detectable by immunofluorescence, unless they are treated with dibutyryl cyclic AMP. Mesenchyme from stage 24 embryonic wing buds in high-density cell cultures will spontaneously form cartilage, as defined by electron microscopy and immunofluorescence with antibody to type II collagen. Cultures prepared from stage 26 wings form numerous aggregates which fail to accumulate an Alcian blue-staining matrix and which resemble mesenchyme cells morphologically. However, because these cells show considerable intracellular immunofluorescence for type II collagen, they are actually unexpressed cartilage cells. Several treatments, including exposure to dibutyryl cyclic AMP, ascorbic acid and an atmosphere of 5% oxygen, or mixture with small numbers of stage 24 wing mesenchyme cells, stimulate expression, as determined by the accumulation of an Alcian blue-staining matrix and an ultrastructurally recognizable cartilage matrix. Since the addition of similar numbers of differentiated cartilage cells does not stimulate expression of stage 26 cells, it is proposed that initial cartilage expression is dependent on a mesenchyme-specific influence which might be removed by cell dissociation. These studies demonstrate that there are at least two distinct transitions in cartilage differentiation: one involves the conversion of mesenchyme to unexpressed chondrocytes and the second involves mesenchyme-dependent expression of chondrogenic differentiation.  相似文献   

10.
Mesodermal cells in the developing chick embryo limb bud appear morphologically homogeneous until stage 21. At stage 22 the prechondrogenic and premyogenic areas begin to condense, culminating in the appearance of cartilage and muscle by stage 25-26. We have examined changes in the hyaluronate-dependent pericellular matrices elaborated by mesodermal cells of the limb bud from different developmental stages and the corresponding changes in production of cell surface-associated and secreted glycosaminoglycans. When placed in culture, most early mesodermal cells (stage 17 lateral plate and stage 19 limb bud) exhibited pericellular coats as visualized by the exclusion of particles. These coats were removed by treatment of the cultures with Streptomyces hyaluronidase. Cells from stage 20-21 limb buds (precondensation) had smaller coats, whereas cells derived from stage 22, 24, and 26 limb buds (condensed chondrogenic and myogenic regions) lacked coats. However, coats were reformed during subsequent cytodifferentiation of chondrocytes; chondrocytes from stage 28 and 30 limb buds, and more mature chondrocytes from stage 38 tibiae, had pericellular coats. Thus, cytodifferentiation of cartilage is accompanied by extensive intercellular matrix accumulation in vivo and reacquisition of pericellular coats in vitro. Although their structure was still dependent on hyaluronate, chondrocyte coats were associated with increased proteoglycan content compared to the coats of early mesodermal cells. The amount of incorporation of [3H]acetate into cell surface hyaluronate remained relatively constant from stages 17 to 38, whereas in the medium compartment, incorporation into hyaluronate was more than 4-fold greater by stage 17 and 19 mesodermal cells than by cells from stages between 20 and 38. However, there was a progressive increase in incorporation into cell surface and medium chondroitin sulfate throughout these developmental stages. Thus, at the time of cellular condensation in the limb bud in vivo, we have observed a reduction in size of hyaluronate-dependent pericellular coats and a dramatic change in the relative proportion of hyaluronate and chondroitin sulfate produced by the mesodermal cells in vitro.  相似文献   

11.
Previous studies showed that cultures of chick limb bud mesenchymal cells plated at high density, to maximize chondrogenic expression, had a much reduced extracellular matrix around chondrocytes when exposed to 4-methyl-, umbelliferyl-β-d-xyloside. The majority of newly synthesized chondroitin sulfate chains were found in the culture medium presumably bound to the xyloside as opposed to their normal deposition on the core protein of proteoglycan. The question remained open as to whether the development of an abnormal matrix affected the synthesis of extracellular deposition of other cartilage-specific macromolecules. We have analyzed, both morphologically and biochemically, the synthesis and deposition of Type I and Type II collagen by β-d-xyloside-treated cultures of limb mesenchymal cells. While the rate of collagen synthesis per plate and its extracellular accumulation after 8 days in culture were reduced to some extent, the ratios of Type II to Type I collagen and the morphological distribution of these macromolecules were not affected by exposure to β-d-xyloside. We conclude that the expression of the cartilage-specific Type II collagen during chondrogenic differentiation is, although reduced, qualitatively not dependent on the amount of extracellular chondroitin sulfate chains attached to matrix-associated proteoglycan core protein. However, prolonged exposure of limb bud cells to xylosides leads to the formation of a chondroitin sulfate- and collagen-deficient matrix which, in turn, reduces the capacity of limb bud cells to synthesize Types I and II collagen.  相似文献   

12.
Chondrogenesis was monitored in micromass cultures of mesenchymal cells derived from the distal tip of stage-25 chick limb buds over a 6-day period. Alcian green staining and immunofluorescent localization of cartilage-specific proteoglycans revealed the appearance of cartilage matrix by day 3 of cell culture. By day 6, cultures contained a uniform and homogeneous population of fully differentiated chondrocytes throughout the cell layer, with only a narrow rim of nonchondrogenic cells around the extreme periphery of the culture. Synthesis of sulfated glycosaminoglycans also progressively increased between days 3 and 6, being 8-fold higher at day 6 than at day 1 of culture. Both adenylate cyclase (AC) activity and cAMP concentrations increased dramatically during the first 2 days of culture, reaching maximal levels by day 2, which remained elevated and stable throughout the remaining chondrogenic period (days 3-6). Responsiveness of both AC and cAMP concentrations of the cells to PGE2 was maximal by day 1 of culture and was increased over control cells by 12-fold and 8-fold respectively. Both responses, however, were dramatically reduced by day 3, at which time the initiation of cartilage formation was apparent. Responsiveness of cells during the prechondrogenic period to PGE2 was relatively specific in that no effects could be demonstrated with equivalent concentrations of PGF2 alpha or 6-keto-PGF1 alpha, although PGl2 did produce increases in cAMP concentrations of about 50% of those of PGE2. These results indicate that previously reported changes in the cAMP system in heterogeneous cell cultures derived from whole limb buds reflect changes occurring in the chondrogenic cell type and indicate further that peak responsiveness of the cAMP system of these cells to prostaglandins is restricted to prechondrogenic developmental periods.  相似文献   

13.
14.
Demineralized bone matrix (DBM) induces development of bone in vivo via the endochondral mode of development. Early events in this inductive process involve the appearance of mesenchymal cells (day 3) followed by chondrogenic differentiation (day 7) after subcutaneous implantation of DBM. In this investigation the chondrogenic potential in vitro of day 3 and day 4 mesenchymal cells from a DBM-induced implant has been explored. Immunofluorescent examination of day 3 cell cultures maintained for 4 days revealed the presence of type II collagen and cartilage-specific proteoglycans only in spherical or polyhedral cells. Micromass cultures and agarose suspension cultures showed toluidine-blue metachromasia in only a small population of cells. Biochemical estimation of 35SO4-labeled proteoglycans from suspension cultures of day 3 and day 4 cells maintained for 3 days indicated the presence of 29% and 38% large cartilage-specific proteoglycans, respectively. Addition of bone-inductive guanidine extract of DBM to the cultures did not significantly increase the percentage of large proteoglycans. These observations suggest that day 3 and day 4 cells can undergo chondrogenic differentiation in vitro without the continued presence of the bone-inductive guanidine extract. The presence of guanidine extract in cultures did not enhance chondrogenic expression or promote the recruitment of mesenchymal cells and their transformation to the chondrogenic phenotype.  相似文献   

15.
In insulin containing defined medium TGF-beta 1, TGF-beta 2, and bFGF all stimulate chondrogenic differentiation in high-density micromass cultures of distal limb bud mesenchyme cells of chick embryos. In addition bFGF inhibits myogenic differentiation, while TGF-beta 1 and TGF-beta 2 appear to have no effect. TGF-beta 1 and bFGF together act additively to enhance chondrogenesis, while TGF-beta blocks the bFGF inhibitory action on myoblasts, thus allowing them to differentiate. In the absence of insulin, the inhibitory effect of bFGF on muscle cell differentiation is reduced; cartilage differentiation in the presence of the above growth factors is also slightly reduced.  相似文献   

16.
17.
Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.  相似文献   

18.
19.
Distal chick wing bud mesenchyme from stages 19 to 27 embryos has been grown in micromass culture. The behavior of cultures comprising mesenchyme located within 350 microns of the apical ectodermal ridge (distal zone mesenchyme) was compared to that of cultures of the immediately proximal mesenchyme (subdistal zone cultures). In cultures of the distal mesenchyme from stages 21-24 limbs, all of the cells stained immunocytochemically for type II collagen within 3 days, indicating ubiquitous chondrogenic differentiation. At stage 19 and 20, this behavior was only observed in cultures of the distal most 50-100 microns of the limb bud mesenchyme. Between stages 25 and 27, distal zone cultures failed to become entirely chondrogenic. At all stages, subdistal zone cultures always contained substantial areas of nonchondrogenic cells. The different behavior observed between distal zone and corresponding subdistal zone cultures appears to be a consequence of the presence of somite-derived presumptive muscle cells in the latter, since no such difference was observed in analagous cultures prepared from muscle-free wing buds. The high capacity of the distal zone for cartilage differentiation supports a view of pattern formation in which inhibition of cartilage is an important component. However, its consistent behavior in vitro indicates that micromass cultures do not reflect the in vivo differences between the distal zones at different stages. The subdistal region retains a high capacity of cartilage differentiation and the observed behavior in micromass reflects interactions with a different cell population.  相似文献   

20.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号