首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

2.
The Wnt antagonist Frzb-1 is expressed during limb skeletogenesis, but its roles in this complex multistep process are not fully understood. To address this issue, we determined Frzb-1 gene expression patterns during chick long bone development and carried out gain- and loss-of-function studies by misexpression of Frzb-1, Wnt-8 (a known Frzb-1 target), or different forms of the intracellular Wnt mediator LEF-1 in developing limbs and cultured chondrocytes. Frzb-1 expression was quite strong in mesenchymal prechondrogenic condensations and then characterized epiphyseal articular chondrocytes and prehypertrophic chondrocytes in growth plates. Virally driven Frzb-1 misexpression caused shortening of skeletal elements, joint fusion, and delayed chondrocyte maturation, with consequent inhibition of matrix mineralization, metalloprotease expression, and marrow/bone formation. In good agreement, misexpression of Frzb-1 or a dominant-negative form of LEF-1 in cultured chondrocytes maintained the cells at an immature stage. Instead, misexpression of Wnt-8 or a constitutively active LEF-1 strongly promoted chondrocyte maturation, hypertrophy, and calcification. Immunostaining revealed that the distribution of endogenous Wnt mediator beta-catenin changes dramatically in vivo and in vitro, from largely cytoplasmic in immature proliferating and prehypertrophic chondrocytes to nuclear in hypertrophic mineralizing chondrocytes. Misexpression of Frzb-1 prevented beta-catenin nuclear relocalization in chondrocytes in vivo or in vitro. The data demonstrate that Frzb-1 exerts a strong influence on limb skeletogenesis and is a powerful and direct modulator of chondrocyte maturation, phenotype, and function. Phases of skeletogenesis, such as terminal chondrocyte maturation and joint formation, appear to be particularly dependent on Wnt signaling and thus very sensitive to Frzb-1 antagonistic action.  相似文献   

3.
4.
5.
During limb development, epithelial cells in the apical ectodermal ridge keep the underlying mesenchymal cells in a proliferative state preventing differentiation by secreting signaling molecules such as epidermal growth factor (EGF). We investigated the molecular mechanism of the EGF effect on the regulation of micromass culture-induced chondrogenesis of chick limb bud mesenchymal cells as a model system. We found that expression and tyrosine phosphorylation of the EGF receptor was increased transiently during chondrogenesis. Exogenous EGF inhibited chondrogenic differentiation of mesenchymal cells, and this effect was reversed by the EGF receptor inhibitor AG1478. EGF treatment also inhibited the expression and activation of protein kinase C-alpha, whereas it activated Erk-1 and inhibited p38 mitogen-activated protein kinase, all of which appeared to be involved in the EGF-induced inhibition of chondrogenesis. Stimulation of the EGF receptor blocked precartilage condensation and altered the expression of cell adhesion molecules such as N-cadherin and integrins alpha(5) and beta(1). All these EGF effects were reversible by AG1478. The data indicate that EGF negatively regulate chondrogenesis of chick limb bud mesenchymal cells by inhibiting precartilage condensation and by modulating signaling pathways including those of protein kinase C-alpha, Erk-1, and p38 mitogen-activated protein kinase.  相似文献   

6.
The glycosaminoglycan hyaluronate (HA) appears to play an important role in limb cartilage differentiation. The large amount of extracellular HA accumulated by prechondrogenic mesenchymal cells may prevent the cell-cell and/or cell-matrix interactions necessary to trigger chondrogenesis, and the removal of extracellular HA may be essential to initiate the crucial cellular condensation process that triggers cartilage differentiation. It has generally been assumed that HA turnover during chondrogenesis is controlled by the activity of the enzyme hyaluronidase (HAase). In the present study we have performed a temporal and spatial analysis of HAase activity during the progression of limb development and cartilage differentiation in vivo. We have separated embryonic chick wing buds at several stages of development into well-defined regions along the proximodistal axis in which cells are in different phases of differentiation, and we have examined HAase activity in each region. We have found that HAase activity is clearly detectable in undifferentiated wing buds at stage 18/19, which is shortly following the formation of a morphologically distinct limb bud rudiment, and remains relatively constant throughout subsequent stages of development through stage 27/28, at which time well-differentiated cartilage rudiments are present. Moreover, HAase activity in the prechondrogenic distal subridge regions of the limb at stages 22/23 and 25 is just as high as, or even slightly higher than, it is in proximal central core regions where condensation and cartilage differentiation are progressing. We have also found that limb bud HAase is active between pH 2.2 and 4.5 and is inactive above pH 5.0. This suggests that limb HAase is a lysosomal enzyme and that extracellular HA would have to be internalized to be degraded. These results indicate that the onset of chondrogenesis is not associated with the appearance or increase in activity of HAase. We suggest that possibility that HA turnover may be regulated by the binding and endocytosis of extracellular HA in preparation for its intracellular degradation by lysosomal HAase. Finally, we have found that the apical ectodermal ridge (AER)-containing distal limb bud ectoderm possesses a relatively high HAase activity. We suggest the possibility that a high HAase activity in the AER may ensure a rapid turnover and remodeling of the disorganized HA-rich basal lamina of the AER that might be essential for limb outgrowth.  相似文献   

7.
8.
9.
10.
11.
High-density chick limb bud cell culture is a useful model to study mesenchymal condensatifons and chondrogenesis. Most previous studies have focused on the effects of soluble reagents on terminal chondrogenic differentiation and have not defined the early cellular processes and signaling events. In this study, we defined five successive stages in the differentiation process: 1) dissociated cells, 2) small aggregates, 3) formation of cell clusters, 4) precartilaginous condensations, and 5) cartilage nodule. We used RCAS retrovirus-mediated Wnt-7a gene transduction to test the effect of Wnt-7a on the differentiation process. We found that Wnt-7a suppressed chondrogenic differentiation. Wnt-7a did not inhibit the initiation of condensation formation but blocked the progression of precartilaginous condensations to cartilage nodules. The Wnt-7a-transduced cultures showed characteristics of a less mature culture with persistent expression of NCAM, N-cadherin, wider distribution of integrin β1 and fibronectin, and suppression of tenascin-C. BMP-2 is known to enhance chondrogenic differentiation in these cultures by promoting cell clusters to form continuous sheet-like precartilaginous condensations. However, cultures exposed to both BMP-2 and Wnt-7a showed inhibition of chondrogenic differentiation. Different signaling molecules such as Wnt-7a and BMP-2 may have antagonistic effects on cartilage differentiation and the gradient of the two molecules may be involved in defining the boundaries of the initial precartilaginous condensation. We propose that the shape of the precartilaginous condensations may be modulated by local concentrations of signaling molecules, such as Wnt-7a and BMP-2, which act to alter cell-substrate and cell-cell adhesions. J. Cell. Physiol. 180:314–324, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

12.
The extracellular matrix (ECM) plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs) are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34). By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.  相似文献   

13.
Limb bud ectoderm inhibits chondrogenesis by limb bud mesenchymal cells cultured at high density or on collagen gels. This ectodermal antichondrogenic influence has been postulated to function in vivo in regulating the spatial patterning of cartilage and soft connective tissue in the limb. We have developed a method for preparing ectoderm-conditioned medium containing antichondrogenic activity. Using a simple bioassay, we have investigated some characteristics of the ectodermal products and their effects on limb bud mesenchymal cells. Inhibition of chondrogenesis by ectoderm-conditioned medium was tested on limb bud mesenchymal cells cultured on collagen gels. The antichondrogenic influence involves enhanced cell spreading and is alleviated by agents, such as cytochalasin D, that induce cell rounding. Fibronectin resembles ectoderm-conditioned medium in its ability to inhibit chondrogenesis and promote cell spreading in collagen gel cultures of limb bud mesenchymal cells. However, Western blot analysis shows that the antichondrogenic activity of ectoderm-conditioned medium is not due to fibronectin in the medium. Peptides related to the fibronectin cell-binding domain block the antichondrogenic effect of fibronectin, but not that of ectoderm-conditioned medium. On the other hand, an antibody to an integrin, as well as heparan sulfate, alleviates the antichondrogenic effects of both fibronectin and ectoderm-conditioned medium. The antichondrogenic effect of ectoderm-conditioned medium may be mediated by an integrin and by a cell surface heparan sulfate proteoglycan, but it does not depend directly upon fibronectin-mediated cell spreading.  相似文献   

14.
In the developing limb bud, mesenchymal cells show position-specific affinity, suggesting that the positional identity of the cells is represented as their surface properties. Since the affinity is regulated by glycosylphosphatidylinositol (GPI)-anchored cell surface proteins, and by EphA4 receptor tyrosine kinase, we hypothesized that the GPI-anchored ligand, the ephrin-A family, also contributes to the affinity. Here, we describe the role of ephrin-A2 in the chick limb bud. Ephrin-A2 protein is uniformly distributed in the limb bud during early limb development. As the limb bud grows, expression of ephrin-A2 is strong in its proximal-to-intermediate regions, but weak distally. The position-dependent expression is maintained in vitro, and is regulated by FGF protein, which is produced in the apical ectodermal ridge. To investigate the role of ephrin-A2 in affinity and in cartilage morphogenesis of limb mesenchyme, we ectopically expressed ephrin-A2 in the limb bud using the retrovirus vector, RCAS. Overexpressed ephrin-A2 modulated the affinity of the mesenchymal cells that differentiate into autopod elements. It also caused malformation of the autopod skeleton and interfered with cartilage nodule formation in vitro without inhibiting chondrogenesis. These results suggest that ephrin-A2 regulates the position-specific affinity of limb mesenchyme and is involved in cartilage pattern formation in the limb.  相似文献   

15.
The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号