首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
随着细菌耐药性问题的日益严重,人们开始寻求新型抗菌制剂。噬菌体裂解酶是一种由ds DNA噬菌体编码的水解酶,能高效特异性地裂解细菌细胞壁且不易使细菌产生耐药性。由于天然裂解酶具有宿主谱窄,不能裂解革兰阴性菌等缺点,研究者对裂解酶进行了大量的设计改造。本研究主要对提高噬菌体裂解酶抗菌活性的研究进展进行综述。  相似文献   

2.
噬菌体裂解酶应用研究进展   总被引:1,自引:1,他引:0  
近年来,随着抗生素的滥用,导致多重耐药性菌株出现的频率加快。因细菌感染导致死亡的人数逐年增多,人类健康面临巨大挑战,因此研制新型抗菌药物刻不容缓。噬菌体裂解酶因其高效的杀菌能力及高度的宿主专一性而成为新一代抗菌制剂的候选之一。其是一种细胞壁水解酶,在双链DNA噬菌体复制后期被合成,通过水解细胞壁肽聚糖上的化学键,从而裂解细菌细胞壁,释放出子代噬菌体。本文系统地介绍了噬菌体裂解酶的研究进展,为相关裂解酶抗菌药物的研发做出有益探索。  相似文献   

3.
噬菌体裂解酶——现状与未来   总被引:1,自引:0,他引:1  
方圆子  王琰  孙建和 《微生物学通报》2009,36(12):1888-1893
噬菌体裂解酶是一种由DNA噬菌体基因编码的高特异性酶, 可高效消化细菌细胞壁。革兰氏阳性菌噬菌体裂解酶的结构域相似, 裂解效率高, 与抗生素具协同抗菌作用, 且不易产生耐受性菌株, 抗体等体液因子对裂解酶的裂解活性影响小, 裂解酶作为一种潜在抗感染药物具有重要的研究价值。目前已建立了多种病原菌裂解酶应用的动物模型, 在防控耐药性病原菌感染上取得重要进展。本文就噬菌体裂解酶的抗菌作用进行综述。  相似文献   

4.
噬菌体及其裂解酶对细菌生物被膜作用的研究进展   总被引:2,自引:0,他引:2  
细菌形成的生物被膜,可保护细菌不易被抗生素杀死,这给临床上相应疾病的治疗及医疗器械的消毒带来极大困难。研究表明,噬菌体及其裂解酶对生物被膜有降解作用。噬菌体能清除细菌在有生物活性或无生物活性的介质表面形成的生物被膜。此外,噬菌体裂解酶比如LySMP、肽酶CHAPk、细胞壁溶解酶CWHs等能清除特定的生物被膜,这可能与裂解酶直接溶菌和裂解细菌细胞外基质有关。同时,与抗生素、钴离子、氯等物质联合使用时,噬菌体对生物被膜的清除作用会更强。本文从噬菌体、噬菌体编码的裂解酶、以及它们联合其他物质对细菌生物被膜的作用进行综述,并对其实际应用做了展望。  相似文献   

5.
噬菌体溶壁酶研究进展   总被引:1,自引:0,他引:1  
溶壁酶是噬菌体在感染末期表达的蛋白质,可水解细菌的细胞壁,使子代噬菌体释放出来。研究表明,溶壁酶在体外能高效地杀死细菌,同样对感染细菌的模型动物有很好的治疗作用。因此,溶壁酶是一种新型的抗菌物质,具有广阔的应用前景。溶壁酶通过水解细菌细胞壁肽聚糖上糖与肽间的酰胺键或肽内氨基酸残基间的连键,从而使细菌裂解。溶壁酶分子由结合功能域和催化功能域两部分组成,其晶体结构使之具有对细胞壁肽聚糖水解的高效性和特异性。对噬菌体溶壁酶的体内外抗菌作用、抗菌机理、晶体结构等最新研究成果及其应用前景进行了综述。  相似文献   

6.
噬菌体内溶素的酶学特性及其应用前景   总被引:2,自引:0,他引:2  
噬菌体内溶素是噬菌体在入侵宿主菌及侵染后期释放过程中合成的一类酶蛋白,该蛋白质能够破坏宿主细胞壁肽聚糖层。噬菌体编码的内溶素有四种类型:葡糖苷酶、酰胺酶、肽链内切酶和转糖基酶。大部分噬菌体内溶素由于缺少信号肽无法分泌表达,通常需要另外一种噬菌体编码的穴蛋白(holin)破坏细胞膜,然后才能够进入到细胞周间质裂解细菌细胞壁。大部分噬菌体内溶素可以特异地作用于自身宿主菌,同时也可以利用基因工程手段有目的地改造成功能特异的酶蛋白,因此可以用来作为生物制剂预防及控制微生物感染。  相似文献   

7.
本文报道用静止期细菌吸附噬菌体速率常数测定(ARC),和细胞壁脂多糖(LPS)使50%噬菌体失活量测定(PhI_(50))的结果,以试图分析讨论存在于大肠埃希氏菌细胞壁上的噬菌体受体位置和数量。志贺氏菌噬菌体Sh的受体位置也一并于此进行试验和讨论。经试验可被噬菌体E-4(φ369)裂解的菌株9株,ARC试验K值为198~515,其中3株提取LPS测定PhI_(50)为<0.125-0.5μg/ml,证明这些细菌细胞壁上有大量E-4噬菌体的受体,而且这种受体就定位在LPS上。被噬菌体E-1(φ484)和Sh(φ62)裂解的许多R菌株,ARC试验获得很高的K值,但提取的LPS不能使这两株噬菌体失活,说明这些细菌细胞壁上虽有大量的相应受体,但受体位置不在LPS上,很可能在脂蛋白上,尚待实验证明。试验结果进一步推论两株噬菌体的受体是不相同的。被噬菌体E-2(φ466)裂解的菌株,ARC试验K值不超过100,说明在细菌细胞壁上相应受体数目较少,或噬菌体尾丝末端与受体的亲和力较低。单独的LPS不能作为噬菌体的受体,但O抗原的存在似乎对噬菌体的吸附有协同作用。噬菌体E-3(φ451)ARC试验K值很低,每个细菌细胞壁上的受体可能只有少数的几个。因此,从细胞外的裂解大概是不可能的,而是必须在细胞内复制,然后从细胞内裂解。  相似文献   

8.
噬菌体裂解酶是噬菌体产生的细胞壁水解酶,通过水解宿主菌细胞壁使子代噬菌体释放,在体外能高效且特异性地杀死细菌。本研究旨在克隆和表达链球菌噬菌体裂解酶PlyC,并测定其生物学活性。利用PCR方法扩增PlyC的2条肽链PlyCA和PlyCB,构建表达载体pET-32a(+)-PlyCA和pET-32a(+)-PlyCB,分别转化至大肠杆菌BL21(DE3)中,以0.7 mmol/L IPTG在30 oC诱导7 h实现了高效表达,SDS-PAGE分析表明PlyCA和PlyCB表达量均可达菌体总蛋白的30%以上。采用Ni2+-NTA亲和层析法纯化目的蛋白,其纯度大于95%。用透析复性方法得到目的产物重组链球菌噬菌体裂解酶PlyC,以浊度法和平板计数法检测其体外抗菌效果,扫描电子显微镜观察裂解酶作用前后细菌细胞形态变化。结果表明重组PlyC能特异性裂解化脓性链球菌(A组β-溶血性链球菌),以4μg/mL浓度作用于OD600为0.56的菌液60 min后杀菌率达99.6%,扫描电镜观察结果显示该酶作用于菌体后,链球菌细胞裂解,呈碎片状态。本研究为开发一种新型、高效的链球菌感染疾病治疗药物打下了基础。  相似文献   

9.
噬菌体裂解酶的抗菌特性   总被引:3,自引:0,他引:3  
王琰  陆承平 《微生物学报》2009,49(10):1277-1281
摘要:噬菌体裂解酶是一类细胞壁水解酶,可水解肽聚糖,造成细菌的破裂。裂解酶一般具有两到三个结构域,参与对底物的催化和结合。作为一种新型的杀菌制剂,裂解酶已被越来越多地应用于化脓链球菌、肺炎链球菌、金黄色葡萄球菌等革兰氏阳性细菌病的治疗。与抗生素治疗相比,裂解酶不易使细菌产生抗性且作用相对专一,这可能是解决现在日趋严重的细菌耐药性的一种可行方法。另外,裂解酶还具有高效性,作用协同性,且自身抗体不削弱其作用等优势,使之成为未来预防、控制致病菌一种可能的新途径。  相似文献   

10.
裂解酶治疗的研究进展与应用前景   总被引:3,自引:0,他引:3  
多耐药病原细菌的不断出现和传播给公共医疗造成了严峻的威胁和挑战,开发新的抗菌分子迫在眉睫。噬菌体裂解酶来源于噬菌体,具有独特的进化和选择优势,不仅能高效快速的杀灭多耐药细菌,而且不易诱导细菌产生新的耐药性。本文对噬菌体裂解酶的结构和功能进行了简要的介绍,重点综述了裂解酶在抗细菌感染中近年的研究进展和应用前景。  相似文献   

11.
The recombinant lysins of lytic phages, when applied externally to Gram-positive bacteria, can be efficient bactericidal agents, typically retaining high specificity. Their development as novel antibacterial agents offers many potential advantages over conventional antibiotics. Protein engineering could exploit this potential further by generating novel lysins fit for distinct target populations and environments. However, access to the peptidoglycan layer is controlled by a variety of secondary cell wall polymers, chemical modifications, and (in some cases) S-layers and capsules. Classical lysins require a cell wall-binding domain (CBD) that targets the catalytic domain to the peptidoglycan layer via binding to a secondary cell wall polymer component. The cell walls of Gram-positive bacteria generally have a negative charge, and we noticed a correlation between (positive) charge on the catalytic domain and bacteriolytic activity in the absence of the CBD (nonclassical behavior). We investigated a physical basis for this correlation by comparing the structures and activities of pairs of lysins where the lytic activity of one of each pair was CBD-independent. We found that by engineering a reversal of sign of the net charge of the catalytic domain, we could either eliminate or create CBD dependence. We also provide evidence that the S-layer of Bacillus anthracis acts as a molecular sieve that is chiefly size-dependent, favoring catalytic domains over full-length lysins. Our work suggests a number of facile approaches for fine-tuning lysin activity, either to enhance or reduce specificity/host range and/or bactericidal potential, as required.  相似文献   

12.
Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis. Gp11 of Che12 was found to have Chitinase domain that serves as endolysin (lysin A) for Che12. Structure of gp11 was modeled and evaluated using Ramachandran plot in which 98 % of the residues are in the favored and allowed regions. Che12 lysin A was predicted to act on NAG-NAM-NAG molecules in the peptidoglycan of cell wall. The tautomers of NAG-NAM-NAG molecule were generated and docked with lysin A. The stability and binding affinity of lysin A – NAG-NAM-NAG tautomers were studied using molecular dynamics simulations.  相似文献   

13.
Payne KM  Hatfull GF 《PloS one》2012,7(3):e34052
The mycobacterial cell wall presents significant challenges to mycobacteriophages--viruses that infect mycobacterial hosts--because of its unusual structure containing a mycolic acid-rich mycobacterial outer membrane attached to an arabinogalactan layer that is in turn linked to the peptidoglycan. Although little is known about how mycobacteriophages circumvent these barriers during the process of infection, destroying it for lysis at the end of their lytic cycles requires an unusual set of functions. These include Lysin B proteins that cleave the linkage of mycolic acids to the arabinogalactan layer, chaperones required for endolysin delivery to peptidoglycan, holins that regulate lysis timing, and the endolysins (Lysin As) that hydrolyze peptidoglycan. Because mycobacterial peptidoglycan contains atypical features including 3→3 interpeptide linkages, it is not surprising that the mycobacteriophage endolysins also have non-canonical features. We present here a bioinformatic dissection of these lysins and show that they are highly diverse and extensively modular, with an impressive number of domain organizations. Most contain three domains with a novel N-terminal predicted peptidase, a centrally located amidase, muramidase, or transglycosylase, and a C-terminal putative cell wall binding domain.  相似文献   

14.
Bacteriolytic enzymes often possess a C‐terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria. The bactericidal activity of this enzyme, however, appears to be strongly dependent on the age of the bacterial culture. Although highly bactericidal against cells in the early exponential phase, the enzyme is substantially less effective against stationary phase cells, thus limiting its application in real‐world settings. We hypothesized that the binding domain of PlyPH may differ in affinity to cells in different Bacillus growth stages and may be primarily responsible for the age‐restricted activity. We therefore employed an in silico approach to identify phage lysins differing in their specificity for the bacterial cell wall. Specifically we focused our attention on Plyβ, an enzyme with improved cell wall‐binding ability and age‐independent bactericidal activity. Although PlyPH and Plyβ have dissimilar binding domains, their catalytic domains are highly homologous. We characterized the biocatalytic mechanism of Plyβ by identifying the specific bonds cleaved within the cell wall peptidoglycan. Our results provide an example of the diversity of phage endolysins and the opportunity for these biocatalysts to be used for broad‐based protection from bacterial pathogens. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1487–1493, 2015  相似文献   

15.
Bacteriophage lytic enzymes, or lysins, are highly evolved molecules produced by bacterial viruses (bacteriophage) to digest the bacterial cell wall for bacteriophage progeny release. Small quantities of purified recombinant lysin added to gram-positive bacteria causes immediate lysis resulting in log-fold death of the target bacterium. Lysins have now been used successfully in animal models to control pathogenic antibiotic resistant bacteria found on mucosal surfaces and in blood. The advantages over antibiotics are their specificity for the pathogen without disturbing the normal flora, the low chance of bacterial resistance to lysins and their ability to kill colonizing pathogens on mucosal surfaces, capabilities that were previously unavailable. Thus, lysins could be an effective anti-infective in an age of mounting antibiotic resistance.  相似文献   

16.
Developing chimeric lysins with a wide lytic spectrum would be important for treating some infections caused by multiple pathogenic bacteria. In the present work, a novel chimeric lysin (Ply187N-V12C) was constructed by fusing the catalytic domain (Ply187N) of the bacteriophage lysin Ply187 with the cell binding domain (146-314aa, V12C) of the lysin PlyV12. The results showed that the chimeric lysin Ply187N-V12C had not only lytic activity similar to Ply187N against staphylococcal strains but also extended its lytic activity to streptococci and enterococci, such as Streptococcus dysgalactiae, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis, which Ply187N could not lyse. Our work demonstrated that generating novel chimeric lysins with an extended lytic spectrum was feasible through fusing a catalytic domain with a cell-binding domain from lysins with lytic spectra across multiple genera.  相似文献   

17.
Bacillus anthracis causes anthrax, a lethal disease affecting humans, which has attracted attention due to its bioterrorism potential. gamma-Phage specifically infects B. anthracis, and is used for its detection. gamma-Phage lysin, PlyG, specifically lyses B. anthracis. Mutational analysis of PlyGB (PlyG binding domain; residues 156-233) indicated that positions 190-199 are necessary for binding to B. anthracis. This region is the central part of PlyGB and is predicted to form a beta-sheet. The amino acid residues of this region are also conserved in other lysins specific for B. anthracis. Alanine substitution at position 190 or 199 within this region resulted in significantly reduced binding, suggesting that L190 and Q199 play key roles in binding of PlyGB to B. anthracis. Our observations provide new insight into the mechanism of specific binding of lysin to B. anthracis, and may be useful in establishing new methods for detection of B. anthracis.  相似文献   

18.
Pneumococcal bacteriophage-encoded lysins are modular choline binding proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) against streptococcal infections. Here we present the crystal structures of the free and choline bound states of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1. While the catalytic module displays an irregular (beta/alpha)(5)beta(3) barrel, the cell wall-anchoring module is formed by six similar choline binding repeats (ChBrs), arranged into two different structural regions: a left-handed superhelical domain configuring two choline binding sites, and a beta sheet domain that contributes in bringing together the whole structure. Crystallographic and site-directed mutagenesis studies allow us to propose a general catalytic mechanism for the whole glycoside hydrolase family 25. Our work provides the first complete structure of a member of the large family of choline binding proteins and reveals that ChBrs are versatile elements able to tune the evolution and specificity of the pneumococcal surface proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号