首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 254 毫秒
1.
段春燕  张凯  段义忠 《生物工程学报》2020,36(12):2850-2859
蔷薇科桃属植物长柄扁桃Amygdalus pedunculata Pall.是我国重点发展的12种木本油料作物之一。将自然生长在陕西省榆林市毛乌素沙地的长柄扁桃进行高通量测序、组装得到了GenBank登录号为MG602257的长柄扁桃叶绿体基因组。与NCBI中其他两个长柄扁桃叶绿体基因组 (MG869261和KY101153) 进行序列比对发现:长柄扁桃叶绿体基因组均呈现典型的4分区域结构;基因组序列GC含量均是36.8%;总长度MG602257相似文献   

2.
以姜科(Zingiberaceae)豆蔻属(Amomum Roxb.)阳春砂(Amomum villosum)为试材,利用Illumina Hiseq 4000测序平台对阳春砂叶绿体基因组进行测序,通过生物信息学分析方法进行序列组装、注释和特征分析,以揭示阳春砂与其他姜科植物的进化关系及其在系统发育中的地位,为豆蔻属植物的物种鉴定提供理论依据。结果表明:(1)阳春砂叶绿体基因组全长164 069 bp,GC含量为36.1%,包括1对29 959 bp的反向重复区(IR)、一个大单拷贝区(LSC;88 798 bp)和一个小单拷贝区(SSC;15 353 bp);共注释得到133个基因,包括8个rRNA基因、38个tRNA基因和87个蛋白编码基因。(2)在阳春砂基因组中共检测到157个SSR位点,大部分SSR均由A和T组成;豆蔻属物种在基因组大小、IR边界区高度保守,核酸变异主要发生在LSC和SSC区。(3)最大似然法(Maximum Likelihood, ML)聚类分析显示,阳春砂与同属的爪哇白豆蔻(Amomum compactum)和白豆蔻(Amomum kravanh)亲缘关系最近,并且与山姜属(Alpinia Roxb.)也有较近的亲缘关系。  相似文献   

3.
荷花玉兰是重要的药用、观赏及园林绿化植物.应用454高通量测序技术对荷花玉兰叶绿体全基因组进行测序,解析了其基因组结构,并与近缘物种基因组进行了比较分析.荷花玉兰叶绿体基因组全长为159623bp,两个反向互补重复区(IRs)长26563bp,被分隔的大单拷贝区(LSC)和小单拷贝区(SSC)长度分别为87757和18740bp.成功注释129个叶绿体基因,其中18个基因含有内含子.基因的种类、数目以及GC含量等与其他木兰科物种相类似.生物信息学分析获得218个SSR位点,大多位点富含A-T,具有碱基偏好性.木兰科物种的重复基序类型和丰度相对保守,有利于开发叶绿体基因组载体.木兰亚纲植物叶绿体基因组的大小及IR区边界的变化与ycf1的长度密切相关.采用30个物种叶绿体基因组的66个共有蛋白编码基因构建系统发育树,对木兰属在被子植物中的进化位置进行了探讨.荷花玉兰叶绿体全基因组序列的获得和结构解析对优良品种培育、叶绿体基因组工程、木兰科物种分子标记开发及系统发育关系的研究具有重要价值.  相似文献   

4.
多花海棠(Malus floribunda Siebold.)是世界范围内广泛栽培的苹果属物种,具有较高的观赏价值和育种意义。对其进行叶绿体基因组比较分析,有利于完善苹果属系统进化以及种质利用的研究内容。基于全基因组测序数据,组装获得一个完整的具有四分体结构的多花海棠叶绿体基因组。该基因组包括大单拷贝区(88 142 bp)、反向重复区B (26 353 bp)、小单拷贝区(19 189 bp)与反向重复区A (26 353 bp),共计160 037 bp。多花海棠叶绿体全基因组共注释到111个基因,包括78个蛋白编码基因、29个tRNA基因和4个rRNA基因。此外,在其基因组中识别到大量的重复序列,与三叶海棠和变叶海棠略有差异。通过计算相对同义密码子使用度,发现其高频密码子共30种,并且密码子具有偏向A/T结尾的使用模式。种间序列比对、边界分析的结果表明,大单拷贝区序列变异较大,8种苹果属植物SC区与IR区扩张收缩情况整体上较为相似。基于叶绿体基因组序列的系统进化分析,将多花海棠、湖北海棠和变叶海棠聚为一类。多花海棠叶绿体基因组的研究可为今后遗传标记开发与种质资源利用等提供数据支持。  相似文献   

5.
直刺变豆菜(Sanicula orthacantha)是中国广泛分布的多年生草本植物, 也是一味著名的民族药。本文通过二代高通量测序平台Illumina HiSeq PE150对直刺变豆菜叶绿体全基因组进行测序, 并通过生物信息学方法对其结构特征进行分析。结果表明: 直刺变豆菜叶绿体全基因组大小为157,163 bp, 包括大单拷贝区(large single copy, LSC)、小单拷贝区(small single copy, SSC)和2个反向重复序列(inverted repeat sequence, IRa和IRb), 长度分别为87,547 bp、17,122 bp和26,247 bp, 具有典型被子植物叶绿体基因组环状四分体结构; 共注释得到129个基因, 包括8个核糖体RNA (rRNA)基因、37个转运RNA (tRNA)基因和84个蛋白质编码基因。直刺变豆菜在叶绿体基因组结构、基因种类、排列顺序上与其他伞形科植物基本一致。直刺变豆菜叶绿体全基因组测序的成功为变豆菜属植物完整叶绿体基因组组装及其特征分析提供了新的方法。  相似文献   

6.
为探究滇黄精(Polygonatum kingianum)叶绿体全基因组特征和密码子使用偏性,利用第二代测序技术对滇黄精嫩叶进行测序,再经组装与注释后得到其叶绿体基因组全序列,通过MISA、EMBOSS和CodonW等软件对滇黄精叶绿体全基因组的SSR位点、系统发育及密码子偏好性进行分析。结果表明,滇黄精完整叶绿体基因组长度为155 852 bp,基因组平均GC含量为37.7%,其大、小单拷贝区(LSC)长度分别为84 633和185 25 bp,反向重复区长度为26 347 bp,注释了132个基因,包括86个蛋白编码基因、38个tRNA基因和8个核糖rRNA基因。叶绿体基因组中共有69个SSR位点,绝大多数属于单碱基重复的A/T类型。系统发育分析表明滇黄精与格脉黄精(P. tessellatum)亲缘关系近,可能与分布地域有关。密码子偏好性分析表明,滇黄精叶绿体基因组密码子使用模式受到自然选择影响大于突变因素,最终确定9个最优密码子。因此, 滇黄精叶绿体基因组遗传结构和系统发育位置及其密码子偏倚的分析,为叶绿体基因工程研究提供理论依据。  相似文献   

7.
头花杜鹃(Rhododendron capitatum)和陇蜀杜鹃(R. przewalskii)是极具观赏价值的野生花卉和药用植物。为探讨头花杜鹃和陇蜀杜鹃叶绿体基因组的遗传结构及进化特征,该研究利用 Illumina HiSeq 4000 平台对头花杜鹃和陇蜀杜鹃的叶绿体全基因组进行测序,经组装和注释后,结合 7 个已发表的杜鹃属植物叶绿体全基因组进行比较基因组学分析和系统发育分析。结果表明:(1)头花杜鹃和陇蜀杜鹃叶绿体全基因组呈典型的环状四分体结构,均由一个大单拷贝区(105 990、109 191 bp)、一个小单拷贝区(2 617、2 606 bp)和一对反向重复区(45 825、47 516 bp)构成,全长分别为200 257、206 829 bp。(2)头花杜鹃和陇蜀杜鹃叶绿体基因组中共鉴定出 263 个SSR位点,大部分 SSR 偏好使用 A/T 碱基,密码子偏好使用 A/U 结尾。(3)杜鹃属植物叶绿体全基因组中普遍存在基因丢失以及基因组重排等结构变异现象。该研究丰富了杜鹃属植物的基因组资源,为头花杜鹃、陇蜀杜鹃的资源开发、遗传进化、育种及系统发育相关研究提供了理论参考。  相似文献   

8.
利用生物信息学方法比较壳斗科6个属14个物种的叶绿体基因组间差异,以近缘物种榛为外类群构建系统进化树,揭示壳斗科叶绿体基因组的结构特征及变异规律。结果显示,14种壳斗科植物的叶绿体基因组均为双链环状分子结构,大小在160 kB左右,差异较小,最大仅差1 366 bp;基因顺序基本一致,而基因数量有所差异,infA、petG、rpl22、ycf1、ycf15等多个基因在部分物种中发生丢失;主要有32个蛋白编码基因长度发生变异,其原因是内含子的丢失、内含子或者编码区的长度改变,华南锥基因长度变异较大;4个IR边界相对保守,但锥栗、Castanea pumila、华南锥3个物种由于边界扩张导致rps19基因部分序列进入到IR区;以榛为外类群构建的系统发育树,各进化支支持率较高,分辨率较好。研究结果表明,叶绿体基因组可以用于分析关系较近与进化较快物种的系统发生问题,为系统发育和进化研究提供依据。  相似文献   

9.
红边龙血树(Dracaena marginata)是一种在全球广泛种植的龙血树属园艺植物,具有较高的观赏价值和药用价值。本研究首次利用高通量测序技术对红边龙血树叶片进行全基因组测序,组装得到完整的叶绿体基因组序列,并进行注释、序列特征比较和系统发育分析。结果表明,红边龙血树叶绿体基因组包含一个典型的四分体结构,长度为154926 bp,是目前已报道的龙血树属中叶绿体基因组最小的物种;共拥有132个基因,包含86个编码蛋白基因、38个转运RNA基因和8个核糖体RNA基因;密码子偏好性分析发现存在偏好使用A/U碱基结尾的现象,整体上密码子偏好性较低;共鉴定出46个简单重复序列位点和54个长重复序列,分别在大单拷贝区与反向重复区有最大检出率;种间边界分析发现边界区域基因存在相对位置差异,扩张收缩情况总体较为相似;与近缘种进行系统发育分析,红边龙血树与细枝龙血树聚为一类,关系最近,符合形态学分类特征。对红边龙血树叶绿体基因组的解析为龙血树属植物的物种鉴定、遗传多样性和叶绿体转基因工程等提供了重要数据基础。  相似文献   

10.
红花变豆菜(Sanicula rubriflora F. Schmidt)是有药用价值的植物,全株干燥后与其他药用同属植物易混淆,种间关系存在争议,通过高通量测序技术对红花变豆菜叶绿体基因组测序,利用生物信息学方法对测序数据进行拼接、注释,首次报道红花变豆菜叶绿体基因组结构及特点,利用叶绿体基因组数据,提供种间分类新证据,并且分析相关类群的进化关系。S. rubriflora叶绿体基因组序列的长度为155 721 bp,其中包括一个85 981 bp的大单拷贝区(large single copy,LSC)和一个17 060 bp的小单拷贝区(small single-copy region,SSC),它们被两个26 340 bp的反向重复区(inverted repeat sequence,IRs)隔开。红花变豆菜叶绿体基因组GC含量为38.20%,包含129个基因,其中84个蛋白质编码基因,37个tRNA基因和8个rRNA基因。红花变豆菜叶绿体基因组结构具有高度保守性,其中编码基因共有51 907个密码子,最多编码5 095个亮氨酸,最少编码689个色氨酸,简单重复序列分析共发现32个位点,大多数是单碱基重复的A/T类型。叶绿体基因组聚类结果支持天胡荽亚科(Hydrocotyloideae)是伞形科(Umbelliferae)内比较原始的类群;变豆菜亚科(Saniculoideae)和芹亚科(Apioideae)为姊妹类群,是伞形科较进化的类群;变豆菜属植物是一个相对自然的类群;红花变豆菜与黄花变豆菜(S. flavovirens)为近缘姊妹种,但是两者形态和地理分布差异较大。该研究结果为变豆菜属属下种间鉴定及其种间演化奠定基础。  相似文献   

11.
基于Illumina平台对朱砂根和红凉伞叶绿体全基因组进行测序,利用生物信息学比较叶绿体基因组结构特征与变异程度,旨在明确朱砂根(Ardisia crenata)及红凉伞(Ardisia crenata var. bicolor)叶绿体基因组特征及差异,并与同科其他物种叶绿体全基因组进行比较分析,确定其在紫金牛属系统发育位置。结果表明,朱砂根和红凉伞均为由一个大单拷贝区(LSC)、一个小单拷贝区(SSC)和一对反向重复区(IRa/IRb)构成的环状四分体结构,注释得到132个基因,其重复序列的类型与分布模式相似,但数量有所差异。其中psbAmatKrpoC2ropBndhKaccDndhFndhDndhHycf1等基因的编码区存在差异,这些位点为朱砂根分子鉴定提供新位点。朱砂根及红凉伞叶绿体基因组具有较高保守性,叶绿体基因组之间没有重排或倒置,IR区序列变异最低,SSC区变异程度最高。系统发育树分析表明紫金牛科和报春花科为两个分支,朱砂根和红凉伞归为紫金牛科,且朱砂根与红凉伞亲缘关系最为密切,从分子水平为红凉伞作为朱砂根变种提供了科学解释。本研究解析了朱砂根及变种红凉伞叶绿体基因组结构,探讨了紫金牛科属间系统发育关系,也为紫金牛科药用植物分类鉴定、系统进化及资源开发利用研究奠定基础。  相似文献   

12.
广西火桐(Firmiana kwangsiensis)和丹霞梧桐(F. danxiaensis)是我国南方特有物种, 其分布范围狭窄, 种群数量少。为了解其叶绿体基因组结构及系统发生关系, 本文通过高通量测序方法获得广西火桐和丹霞梧桐的浅层基因组数据, 通过生物信息学方法对叶绿体全基因组进行组装, 并对其结构特征进行分析。结果表明: 广西火桐和丹霞梧桐的叶绿体基因组大小分别为160,836 bp和161,253 bp, 具有典型被子植物叶绿体基因组环状四分体结构, 包含长度分别为89,700 bp、90,142 bp的大单拷贝区(large single copy, LSC), 长度分别为19,970 bp、20,067 bp的小单拷贝区(small single copy, SSC)及长度分别为25,583 bp、25,522 bp的2个反向重复序列区(inverted repeat sequence, IR)。两个物种的叶绿体基因组共注释得到131个基因, 包括86个蛋白编码基因、37个tRNA基因和8个rRNA基因。广西火桐的叶绿体基因组中共检测出26个正向重复序列、2个反向重复序列、21个回文重复序列、21个串联重复序列和98个简单重复序列; 丹霞梧桐叶绿体基因组中共检测出23个正向重复序列、5个反向重复序列、21个回文重复序列、30个串联重复序列和107个简单重复序列。系统发生分析结果表明5种梧桐属(Firmiana)植物构成两个强烈支持的分支(支持率100%), 一个分支为广西火桐、美丽火桐(F. pulcherrima)和火桐(F. colorata), 其中广西火桐与美丽火桐构成姐妹群; 另一分支是互为姐妹群的丹霞梧桐和云南梧桐(F. major)。综上所述, 广西火桐和丹霞梧桐的叶绿体基因组结构、基因排列及重复序列具有较高的相似性, 系统进化树将5种梧桐属物种分为两个分支, 其中广西火桐和美丽火桐最近; 而丹霞梧桐与云南梧桐关系最近。本研究鉴定的SSR位点可为梧桐属物种系统发生、进化关系的研究提供遗传信息。  相似文献   

13.
为了理清丝兰属(Yucca)叶绿体基因组特征和序列变异情况,进行丝兰属植物叶绿体比较基因组学分析,并构建基于叶绿体基因组的系统发育树。利用高通量测序技术获得无刺龙舌兰(Y. treculeana)叶绿体基因组序列,结合丝兰属现已发表的叶绿体基因组,使用生物信息学方法对6种丝兰属植物叶绿体全基因组进行基本结构、重复序列、边界收缩与扩张以及序列变异分析等在内的比较基因组学研究,并进行系统发育分析。结果表明:6种丝兰属植物叶绿体基因组大小、基因的类型及数目相近,种间基因组结构比较保守;从丝兰属植物叶绿体基因组中检测到多条重复序列,其中SSR位点多是由单核苷酸、双核苷酸和四核苷酸组成,且偏好使用A、T碱基;根据核酸多态性指数π≥0.008,在6种丝兰属植物叶绿体基因组中筛选出了psbK-psbl-trnS-GCUrpl20-rps12ccsA-ndhD 3个高变异区域;基于叶绿体全基因组和LSC+SSC区序列构建的系统发育关系基本一致,确定了6种丝兰属植物间的系统发育关系,其中无刺龙舌兰与克雷塔罗丝兰(Y. queretaroensis)的亲缘关系最近。本研究测序获得了无刺龙舌兰叶绿体基因组,揭示了6种丝兰属植物叶绿体基因组特征和序列变异情况,明确了各物种间的亲缘关系,研究结果可为后续丝兰属植物分子标记开发及系统发育研究提供参考。  相似文献   

14.
四合木(Tetraena mongolica)是我国特有的蒺藜科(Zygophyllaceae)强旱生小灌木,因其起源古老、抗逆性强,所以可作为生物多样性起源和环境演变研究的理想对象,具有重要的学术研究价值。本研究采用Illumina双末端测序技术对四合木叶绿体基因组进行建库测序和分析。选取蒺藜目及牻牛儿苗目共计30个物种叶绿体基因组,与四合木进行系统发育关系分析探讨。结果表明:四合木叶绿体基因组长度为106259bp,其中反向重复区(IR区中)有7种基因,包括4种PCG基因,3种tRNA基因。叶绿体基因组共编码98种基因,包括65种蛋白编码基因、29种tRNA基因与4种rRNA基因。生物信息学表明,在四合木中共搜到92个SSR位点,其中包括74个单核苷酸重复基序,7个二核苷酸重复基序,1个三核苷酸重复基序,9个四核苷酸重复基序和1个五核苷酸基序。没有发现六核苷酸,其中单核苷酸重复在四合木的叶绿体基因组SSR中占比为80.1%。通过MEGA软件采用近邻结合法(neighbor-joining,NJ)对四合木等31个物种的叶绿体基因组进行聚类分析,发现四合木与蒺藜科三齿拉雷亚灌木为最近的姐妹种,其次为牻牛儿苗科智利白桦植物亲缘关系较近,与牻牛儿苗科天竺葵属和牻牛儿苗科高桂花属亲缘关系最远,说明四合木属于蒺藜科物种,这对于四合木的研究等具有一定的参考价值。  相似文献   

15.
刘玉萍  吕婷  朱迪  周勇辉  刘涛  苏旭 《植物研究》2018,38(4):518-525
藏扇穗茅(Littledalea tibetica)是禾本科(Poaceae)雀麦族(Bromeae)中一个具有重要生态价值的多年生高山特有种,主要分布于青藏高原及其毗邻地区。本文采用基于第二代高通量测序平台的Illumina MiSeq技术,对青藏高原特有种—藏扇穗茅进行了叶绿体基因组测序,首次建立了雀麦族物种的标准测序流程;同时,以其近缘物种—黑麦草(Lolium perenne)的叶绿体基因组序列作为参考,组装获得它的叶绿体基因组序列。结果表明,藏扇穗茅叶绿体基因组序列全长136 852 bp,GC含量为38.5%,呈典型的四段式结构,其中大(LSC)、小(SSC)单拷贝区大小分别为80 970和12 876 bp,反向互补重复区(IR)大小为21 503 bp,共注释得到141个基因,包含95个蛋白编码基因、38个tRNA基因和8个rRNA基因,主要分布于大单拷贝区和小单拷贝区。同时,基于藏扇穗茅和其它30种禾本科植物叶绿体基因全序列构建的系统发育树显示,藏扇穗茅与早熟禾亚科中小麦族植物亲缘关系较近。  相似文献   

16.

Background

The ginseng family (Araliaceae) includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships.

Methodology/Principal Findings

We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333–156,459 bp in length including a pair of inverted repeats (25,551–26,108 bp) separated by the large single-copy (86,028–86,566 bp) and small single-copy (18,021–19,117 bp) regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae.

Conclusion

The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.  相似文献   

17.
长爪栘[木衣](Docynia longiunguis Q. Luo&J. L. Liu)是我国特有的栘[木衣]属植物,具有较高的食药用价值。对其叶绿体基因组进行分析,有助于阐明栘[木衣]属内的系统发育关系,为长爪栘[木衣]资源的开发利用及进一步研究奠定基础。结合其近缘种云南栘[木衣]叶绿体基因组数据,在进行全序列比对后,对其系统发育、密码子偏好性等进行分析。长爪栘[木衣]叶绿体基因组序列总长为158914bp(GenBank登录号为MW367027),总GC含量为36.7%,其中大的单拷贝区(large single-copy, LSC)长度为87 020 bp,小的单拷贝区(small single-copy, SSC)长度为19 156 bp,反向重复区(inverted repeats, IRs)长度为26 369 bp。共注释了102个功能性基因,包括72个蛋白编码基因、26个编码tRNA基因和4个编码rRNA基因。构建系统发育树的最佳模型为TVM+F+R2。系统发育分析结果表明,长爪栘[木衣]与栘[木衣](Docynia indica (Wall.) Dcne.)聚为一支,栘[木衣]属物种与苹果属(Malus)聚为一支。对长爪栘[木衣]及近缘种叶绿体基因组序列进行比对分析,trnY (GUA)-psbD、ndhC-trnV (UAC)、accD-psaI、psbZ-trnFM (CAU)和ndhF-trnL等区域的变异较大,核酸多样性分析则表明有11处Pi值>0.01的高变区域,且都位于LSC区及SSC区。除长爪栘[木衣]外,其他序列中均有trnH基因位于IRs/LSC区交界处且都没有越过边界。密码子偏好分析显示,长爪栘[木衣]叶绿体基因中异亮氨酸的密码子编码数量最多,达到了1 205个。长爪栘[木衣]与山荆子(Malusbaccata(L.)Borkh.)、三叶海棠(Malussieboldii(Regel)Rehd.)、湖北海棠(Malus hupehensis (Pamp.) Rehd.)及木瓜(Chaenomeles sinensis (Thouin) Koehne)的亲缘关系最近;其叶绿体基因密码子更偏好于使用A/T结尾;长爪栘[木衣]叶绿体基因组与其他蔷薇科植物叶绿体基因组在4个边界区域基因分布显示出较大差异,与同属的云南栘[木衣]及栘[木衣]叶绿体基因组差异相对较小。长爪栘[木衣]叶绿体基因组的组装注释、系统发育分析及序列比对分析,为该物种的资源鉴定、开发和利用提供了理论依据。  相似文献   

18.
在植物基因组中, 叶绿体DNA (cpDNA)序列可以向核基因组转移成为核质体DNA (NUPT)。NUPTs在植物染色体(包括性染色体)的演化过程中具有重要作用, 但目前相关研究比较缺乏。以雌雄异株植物石刁柏(Asparagus officinalis)为材料, 采用生物信息学方法对其核基因组NUPTs进行注释及分析, 并选取叶绿体基因组反向重复区(IR) 2个片段进行染色体定位。结果表明, 石刁柏核基因组中有2 239个NUPTs序列的插入, 总长度为565 970 bp, 占核基因组的0.047%。不同染色体上插入的NUPTs数量存在较大差异, Y染色体上的NUPTs数量、密度及总长度均高于其它染色体, 表明NUPTs在石刁柏性(Y)染色体上累积的更多。石刁柏叶绿体基因组中的IR区、大单拷贝区(LSC)和小单拷贝区(SSC)序列均能够向核基因组转移, 但IR区序列转移频率更高。此外, 对2个IR区的叶绿体序列进行荧光原位杂交, 其中AocpIR1主要分布在所有染色体的着丝粒部位, 而AocpIR2特异性分布在Y染色体上。研究结果为深入揭示石刁柏基因组的结构及其性染色体的演化奠定了坚实的基础。  相似文献   

19.
在植物基因组中, 叶绿体DNA (cpDNA)序列可以向核基因组转移成为核质体DNA (NUPT)。NUPTs在植物染色体(包括性染色体)的演化过程中具有重要作用, 但目前相关研究比较缺乏。以雌雄异株植物石刁柏(Asparagus officinalis)为材料, 采用生物信息学方法对其核基因组NUPTs进行注释及分析, 并选取叶绿体基因组反向重复区(IR) 2个片段进行染色体定位。结果表明, 石刁柏核基因组中有2 239个NUPTs序列的插入, 总长度为565 970 bp, 占核基因组的0.047%。不同染色体上插入的NUPTs数量存在较大差异, Y染色体上的NUPTs数量、密度及总长度均高于其它染色体, 表明NUPTs在石刁柏性(Y)染色体上累积的更多。石刁柏叶绿体基因组中的IR区、大单拷贝区(LSC)和小单拷贝区(SSC)序列均能够向核基因组转移, 但IR区序列转移频率更高。此外, 对2个IR区的叶绿体序列进行荧光原位杂交, 其中AocpIR1主要分布在所有染色体的着丝粒部位, 而AocpIR2特异性分布在Y染色体上。研究结果为深入揭示石刁柏基因组的结构及其性染色体的演化奠定了坚实的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号