首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
水稻(Oryza sativa)是世界上最重要的粮食作物, 但稻瘟病和纹枯病等病害严重危害水稻的产量和品质, 给我国乃至全球粮食安全带来巨大威胁。鉴定水稻抗病资源、克隆抗病基因、揭示抗性机理并在育种中加以利用, 对抵御水稻病害和保障粮食安全具有十分重要的作用。准确评价水稻资源的抗病性, 是开展抗病机理研究和育种生产应用的关键环节。该文详述了水稻幼苗期人工喷雾接种、分蘖期和孕穗期田间注射接种与离体叶片戳伤接种的稻瘟病抗性鉴定方法, 以及水稻分蘖期田间接种、孕穗期温室接种和离体茎秆接种的纹枯病抗性鉴定方法, 以期为同行鉴定水稻资源、开展抗病理论和应用研究提供参考。  相似文献   

2.
稻瘟病是世界上影响水稻(Oryza sativa)粮食生产的主要病害之一, 抗病基因的发掘与利用是抗病育种的基础和核心。随着寄主水稻和病原菌稻瘟病菌(Magnaporthe oryzae)基因组测序和基因注释的完成, 水稻和稻瘟病菌的互作体系成为研究植物与真菌互作的模式系统。该文对稻瘟病抗病基因的遗传、定位、克隆及育种利用进行概述, 并通过生物信息学分析方法, 探讨了水稻全基因组中NBS-LRR类抗病基因在水稻12条染色体上的分布情况, 同时对稻瘟病菌无毒基因的鉴定及无毒蛋白与抗病蛋白的互作进行初步分析。最后对稻瘟病抗病基因研究存在的问题进行分析并展望了未来的研究方向, 以期为水稻抗稻瘟病育种发展和抗病机制的深入理解提供参考。  相似文献   

3.
水稻抗病功能基因组研究进展   总被引:1,自引:0,他引:1  
作物抗病机制研究对抗性改良有重要的理论和实践意义。水稻是世界上主要粮食作物之一。目前,越来越多的水稻主效抗病基因和抗病相关基因被克隆。对于这些基因的研究可以提高人们对水稻-病原菌互作的认识,并有利于发掘水稻中新的抗性基因。现主要对近年来在水稻抗病研究中取得的成果进行概述和展望。  相似文献   

4.
水稻抗稻瘟病基因资源与分子育种策略   总被引:1,自引:0,他引:1  
稻瘟病是水稻主要病害之一。利用抗病品种是防治稻瘟病最经济、有效和安全的措施。近年来,随着植物先天免疫机制、抗病分子生物学以及水稻和稻瘟菌基因组学研究的不断深入,一系列参与病原菌识别和防卫信号传导与应答,以及外源抗菌蛋白、病原菌激发子等抗病相关基因陆续被鉴定和克隆,为提高水稻抗稻瘟病能力提供了一些新的基因资源、育种策略和技术。本文概述了国内外近年来克隆的主要抗稻瘟病基因资源及其在分子育种研究中应用的进展,提出了通过转基因手段整合不同防卫反应关键调控基因的抗稻瘟病聚合育种策略。  相似文献   

5.
由水稻黄单胞菌水稻变种Xoo引起的水稻白叶枯病是全球性的重要病害之一。已有31个水稻白叶枯抗性基因被鉴定并报道,其中18个被定位到染色体上,5个被克隆。简要综述了水稻白叶枯抗性基因的鉴定、定位和克隆的进展,并讨论了合理利用抗性基因防治白叶枯病的前景。  相似文献   

6.
植物类病变突变体是一类在没有病原物侵染情况下就能自发产生坏死斑的突变体。这类突变往往导致植株的抗病增强和防御相关基因的组成性表达。水稻中已报道了将近200个来源不同的类病变突变体,截至2014年12月73个水稻类病变突变体已被鉴定和命名,其中11个控制类病变性状的基因被克隆,它们分别编码不同的蛋白,包括热激蛋白转录因子、E3泛素连接酶、质膜蛋白激酶、锌指蛋白、酰基转移酶。尽管这些蛋白不是直接与植物抗病途径相关,但是在已鉴定的水稻类病变突变体中,绝大多数提高了对白叶枯病或稻瘟病的抗性,表明这些类病变基因的突变激活了植株的防御系统,并且不同的类病变基因可能参与了不同的抗病信号传导途径。深入研究水稻类病变突变体对作物抗病的分子机理研究和栽培品种的遗传改良都具有重要的意义。  相似文献   

7.
水稻抗白叶枯病基因及其应用研究进展   总被引:1,自引:0,他引:1  
由黄单胞菌水稻变种Xanthomonas oryzae pv.Oryzae(Xoo)引起的白叶枯病是水稻重要病害之一。目前,已有37个水稻白叶枯抗性基因被鉴定并报道,其中28个被定位到染色体上,7个被克隆。本文简要综述了水稻白叶枯抗性基因的鉴定、定位和克隆的进展,并讨论了合理利用抗性基因防治白叶枯病的前景。  相似文献   

8.
水稻抗白叶枯病基因Xa21的研究进展   总被引:6,自引:0,他引:6  
白辉  李莉云  刘国振 《遗传》2006,28(6):745-753
Xa21是最早克隆的水稻抗病基因,作为类受体激酶类广谱抗病基因它受到广泛的关注。转基因Xa21材料,很可能成为世界上第一个被批准进行大田释放的水稻转基因材料。本文在简要回顾Xa21的发现、定位和克隆过程之后,总结了目前Xa21基因的抗病作用机理和育种应用研究现状,包括XA21蛋白质激酶的生化特性、AvrXa21的鉴别、Xa21介导的抗病途径、抗病机理等,并对今后的研究进行了展望。  相似文献   

9.
植物先天免疫主要由两部分组成:一类是通过细胞膜上的病原菌分子模式识别受体识别病原微生物表面存在的分子特征激发的免疫反应(PTI);另一类是专化性的抗病R蛋白识别病原微生物的效应蛋白,从而激发下游的病原菌小种特异性的防卫反应过程(ETI).随着水稻抗病信号途径中越来越多的抗病基因以及关键的调控基因被克隆和功能鉴定,同时多种水稻病原菌效应蛋白的发现,水稻抗病机理的研究也越来越深入.本文阐述了水稻的PTI,ETI及其下游参与免疫信号转导的关键性组分,从而形成一个初步的水稻免疫调控网络.  相似文献   

10.
水稻抗稻瘟病基因的标记辅助选择及定位克隆   总被引:8,自引:0,他引:8  
王忠华 《生命科学》2005,17(2):183-188
水稻抗稻瘟病基因-稻瘟病菌无毒基因相互作用体系是当今植物分子病理学和抗病育种学研究领域的模式体系之一,其中抗病基因的分子定位与克隆及其标记辅助选择已成为该体系的重要内容。本文就这方面的研究进展作一简要综述,以期为水稻抗病育种提供有益的信息。  相似文献   

11.
Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.  相似文献   

12.
稻瘟病是由子囊菌引起的广泛发生在世界各水稻产区的主要真菌病害。由于病原菌致病性的高度分化,使得对稻瘟病很难控制和防治。长期实践证明,培育抗病品种是稻瘟病抗病育种的主要目标。随着基因工程的发展,利用转基因技术导入外源基因改良稻瘟病抗性已成为一条新途径。现有研究表明,通过某些抗病基因、抗真菌蛋白基因、杀菌肽基因的克隆和转育,可以培育出获得对稻瘟病广谱抗性的水稻品种(系)。  相似文献   

13.
Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (~500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ~22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.  相似文献   

14.
Bacterial leaf blight caused by the bacterial pathogen Xanthomonas oryzae pv oryzae (Xoo) limits rice yield in all major rice-growing regions of the world, especially in irrigated lowland and rainfed conditions where predisposition factors favor disease development to epidemic proportions. Since bacterial pathogens are difficult to manage, development of host plant resistance is the most effective means of disease management. As many as 24 major genes conferring resistance to various races of the pathogen have been identified and utilized in rice breeding programs. However, large-scale and long-term cultivation of varieties carrying a single gene for resistance resulted in a significant shift in pathogen race frequency with consequent breakdown of resistance in these cultivars. To combat the problem of resistance breakdown, pyramiding of resistance genes into different cultivars is being carried out. Pyramiding of resistance genes is now possible with molecular markers that are developed for individual genes. This review discusses the various bacterial blight resistance genes identified and their corresponding molecular markers developed for breeding durable resistance into modern rice cultivars.  相似文献   

15.
Cheng SH  Zhuang JY  Fan YY  Du JH  Cao LY 《Annals of botany》2007,100(5):959-966
BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. SCOPE: By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. CONCLUSIONS: Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.  相似文献   

16.
Rice has been grown in Japan for about 3000 years. Although both japonica and indica varieties have been grown in Japan, now japonica rices are grown. Japanese rice breeding has used an ecological breeding approach. While emphasis in rice breeding in the 1940's and 1950's focussed on yield in recent decades quality has been of major importance. Consumer preference and name recognition of high quality varieties, such as Koshihikari, has resulted in slow acceptance of new varieties.Rice germplasm was systematically collected throughout Japan between 1962 and 1963. Subsequent acquisition and collecting, in Japan and other countries, has resulted in 28,000 accessions being conserved in the National Genebank, based at the National institute of Agrobiological Resources (NIAR).Research on genetic diversity of rice using a range of techniques, for example esterase isozymes, has revealed clinal variation in rice radiating from the center of diversity of rice in and around southwest China. Newly found genes in traditional rice germplasm, such as genes for non-elongating mesocotyl, are now routinely identified on the rice genome. Pioneering studies on eco-genetic differentiation of species in the genus Oryza in Japan has revealed much about the complex genepool for which rice evolved.Pest and disease resistance sources, particularly to blast, bacterial blight and brown plant hopper, from many countries have been incorporated into Japanese varieties. Cold tolerance at the booting stage was found in the Indonesian variety Silewah. In the future in characterisation of rice germplasm and interaction between rice germplasm specialists and rice molecular scientists, both in Japan and internationally, will be corner stones to securing rice genetic diversity and rice improvement in the next century.  相似文献   

17.
Recent progress on molecular breeding of rice in China   总被引:2,自引:0,他引:2  
Molecular breeding of rice for high yield, superior grain quality, and strong environmental adaptability is crucial for feeding the world’s rapidly growing population. The increasingly cloned quantitative trait loci and genes, genome variations, and haplotype blocks related to agronomically important traits in rice have provided a solid foundation for direct selection and molecular breeding, and a number of genes have been successfully introgressed into mega varieties of rice. Here we summarize China’s great achievements in molecular breeding of rice in the following five traits: high yield, biotic stress resistance, abiotic stress resistance, quality and physiology. Further, the prospect of rice breeding by molecular design is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号