首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chen T  Wu C  Liu R 《Bioresource technology》2011,102(19):9236-9240
Steam reforming of two kinds of bio-oil from rice husks fast pyrolysis was conducted for hydrogen production at three temperatures (650, 750 and 850 °C) with Ni-based catalyst in a fixed-bed reactor. The gas composition and organic compounds in liquid condensate were detected by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the carbon deposition was also investigated. The results showed that the mole fraction range of hydrogen was within 55.8-61.3% at all temperatures and more hydrogen was produced at the higher temperature. The highest H? efficiency of bio-oil steam reforming was 45.33% when extra water was added. The bio-oil with lower content of chemical compounds has a higher H? efficiency, but its hydrogen volume was less. Analysis of the liquid condensate showed that most of the organic compounds were circularity compounds. The carbon deposition can decrease the bio-oil conversion, and it was easier to form at the temperature of 750 °C.  相似文献   

2.
熔盐热裂解生物质制生物油   总被引:2,自引:1,他引:1  
为探讨热裂解条件对熔盐中生物质热裂解制生物油的影响,在自行设计的反应器中,以摩尔比为7∶6的ZnCl2-KCl混合熔盐作为热裂解的热载体、催化剂和分散剂,考察了500 ℃时添加的金属盐和生物质原料的影响,并采用气相色谱-质谱仪 (GC-MS) 对生物油的主要组成进行了分析。结果表明:添加的金属盐显著影响热裂解产物得率,稀土金属盐显著提高生物油得率,降低生物油的含水率,添加摩尔分数为5.0% LaCl3时生物油得率为32.0%,含水率为61.5%;水稻秸秆热裂解的生物油和焦炭得率较高,稻壳热裂解的气体得率较高;金属添加盐对生物油组成有较强的选择性,LiCl和FeCl2对生物质向小分子裂解具有较强的催化作用,而CrCl3、CaCl2和LaCl3对生物油二次裂解具有抑制作用。研究结果为熔盐热裂解生物质制生物油提供了参考。  相似文献   

3.
Fast pyrolyses of sewage sludge (SS), pig compost (PC), and wood chip (WC) were investigated in an internally circulating fluidized-bed to evaluate bio-oil production. The pyrolyses were performed at 500 °C and the bio-oil yields from SS, PC, and WC were 45.2%, 44.4%, and 39.7% (dried and ash-free basis), respectively. The bio-oils were analyzed with an elemental analyzer, Karl-Fischer moisture titrator, bomb calorimeter, Fourier transformation infrared spectrometer, gel permeation chromatograph, and gas chromatography/mass spectrometry. The results show that the bio-oil from SS is rich in aliphatic and organonitrogen species, while the bio-oil from PC exhibits higher caloric value due to its higher carbon content and lower oxygen content in comparison with that from SS. The bio-oils from SS and PC have similar chemical composition of organonitrogen species. Most of the compounds detected in the bio-oil from WC are organooxygen species. Because of its high oxygen content, low H/C ratio, and caloric value, the bio-oil from WC is unfeasible for use as fuel feedstock, but possible for use as chemical feedstock.  相似文献   

4.
Lei H  Ren S  Wang L  Bu Q  Julson J  Holladay J  Ruan R 《Bioresource technology》2011,102(10):6208-6213
Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650 °C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.  相似文献   

5.
Microalgae are a promising source of protein and biofuels. This study involved the extraction of soluble proteins from raw microalgae using subcritical water hydrolysis followed by pyrolysis of the resulting spent microalgal biomass for bio-oil production. The extraction process produced solubilized protein in amounts up to 10 wt% of the dry biomass. The effects of hydrolysis temperature (150–220 °C), process time (90–180 min), and initial pH (2–12) on the chemical compositions and reactivity of the spent biomass as biofuel intermediates were investigated. It was found that when the temperature and time increased, the protein and carbohydrate fractions of the spent biomass were reduced, while their lipid fraction increased. A low initial pH led to lower protein content in the spent biomass. Compared with the raw microalgae, the spent biomass gave a higher yield of pyrolytic bio-oil that contained much less of the N-containing compounds and higher amounts of long-chain fatty acids (C16) and C14–C20 long-chain hydrocarbons. In addition, enhanced energy recovery and a reduction in the energy consumption of the pyrolysis process were the other benefits acquired from the protein extraction. Therefore, subcritical water hydrolysis was considered to be an effective process to recover solubilized proteins, enhance the properties of the spent biomass, improve the energy balance of the subsequent pyrolysis process, and raise the quality of the bio-oil.  相似文献   

6.
Elephant grass is an abundant, fast growing plant with significant potential as a renewable energy source and for conversion to higher calorific value fuels. This work investigates thermal conversion of elephant grass to bio-gas, bio-oil and charcoal under two heating rates of 10 and 50 degrees C/min. The energy required to pyrolyse elephant grass was evaluated using computer aided thermal analysis technique, while composition of the resultant bio-gas and bio-oil products were monitored with gas chromatographic and mass spectroscopic techniques. At 500 degrees C, the bio-gas compounds consisted primarily of CO(2) and CO with small amounts of methane and higher hydrocarbon compounds. The heat of combustion of the bio-gas compounds was estimated to be 3.7-7.4 times higher than the heat required to pyrolyse elephant grass under both heating rates, which confirms that the pyrolysis process can be self-maintained. Faster heating rate was found to increase the amount of liquid products by 10%, while charcoal yields remained almost the same at 30%. The bio-oil mainly consisted of organic acids, phthalate esters, benzene compounds and amides. The amount of organic acids and benzene compounds were significantly reduced at 50 degrees C/min, while the yields of phthalate esters and naphthalene compounds increased. The difference in bio-oil composition with increased heating rate is believed to be associated with the reduction of the secondary reactions of pyrolysis, which are more pronounced under lower heating rate.  相似文献   

7.
The annual cycle of physical and chemical variables and plankton dynamics was studied in two shallow ponds (East and West Ponds) of the El Hondo wetland, an ecosystem of international importance. Water conductivity increased up to 31–49 mS cm–1 as water level decreased due to high evaporation and minimal water inputs. Initially considered mesohaline, the waters were reclassified as polyhaline during the hot season. EP was subject to successive desiccation‐flooding cycles, and flooding of the dried sediment caused the release of high concentrations of nitrogen and phosphorus compounds, which quickly depleted. The algal species composition was typical of eutrophic ecosystems, and the chlorophyll content indicated that EP was eutrophic and WP mesotrophic. Phytoplanktonic species richness and diversity were low in both ponds. Algal assemblages, in terms of biovolume, were mainly dominated by Dinophyceae in EP and by Cryptophyta in WP. The zooplankton community was dominated by Rotifers (Brachionus and Hexarthra), although Copepods and Ciliates were also important. Different water inputs to the ponds, partial drying in EP during the warm season with the subsequent higher increment of salinity, and the presence of dense populations of submerged macrophytes in WP, explain the differences in plankton communities found between the two ponds.  相似文献   

8.
Bae YJ  Ryu C  Jeon JK  Park J  Suh DJ  Suh YW  Chang D  Park YK 《Bioresource technology》2011,102(3):3512-3520
The pyrolysis of two brown macroalgae (Undaria pinnatifida and Laminaria japonica) and one red macroalgae (Porphyra tenera) was investigated for the production of bio-oil within the temperature range of 300-600°C. Macroalgae differ from lignocellulosic land biomass in their constitutional compounds and high N, S and ash contents. The maximum production of bio-oil was achieved at 500°C, with yields between 37.5 and 47.4 wt.%. The main compounds in bio-oils vary between macroalgae and are greatly different from those of land biomass, especially in the presence of many nitrogen-containing compounds. Of the gaseous products, CO(2) was dominant, while C(1)-C(4) hydrocarbons gradually increasing at 400°C and above. The pretreatment of macroalgae by acid washing effectively reduced the ash content. The pyrolysis of macroalgae offers a new opportunity for feedstock production; however, the utilization of bio-oil as a fuel product needs further assessment.  相似文献   

9.
Ruta graveolens shoot cultures were maintained on static medium supplemented with 0, 1, 2 and 3?% mannitol. The cultures were grown in vessels that ensured a ventilation rate of 7.44, 10.82 or 62.83 air exchanges per day (V1, V2 or V3, respectively). The growth index and fresh weight were significantly increased at 1?% mannitol and decreased with increasing mannitol concentrations, whereas the dry weight (DW) and DW?% increased at higher concentrations of mannitol. Improving the culture ventilation significantly increased all of these parameters. A higher concentration of mannitol resulted in a higher proline content and percentage of coumarins and rutin, but the final accumulation of these bioactive molecules decreased. The coumarins, calculated as xanthotoxin, were increased from 8.15 to 13.60?mg?g?1 DW using (V1 and mannitol-free medium) and (V2 with medium enriched with 2?% mannitol), respectively. Rutin was linearly increased by raising the mannitol concentrations, achieving the highest content of 54.87?mg?g?1 DW using V2 and medium supplemented with 3?% mannitol. The lowest accumulation of coumarins and rutin (32, 144?mg vessel?1, respectively) were found on mannitol-free medium using V1, whereas the highest rutin contents were found on medium with 1?% mannitol using V3. A GC analysis revealed the presence of five main compounds in all of the cultures, coumarin, 7-hydroxucoumarin, scopoletin, xanthotoxin and bergapten, whereas pasoralen was not detected when the cultures were maintained on mannitol-free medium, regardless of the type of vessel. Moreover, the concentrations of these compounds varied according to the mannitol concentration and ventilation.  相似文献   

10.
Zeng F  Liu W  Jiang H  Yu HQ  Zeng RJ  Guo Q 《Bioresource technology》2011,102(2):1982-1987
Solid precipitate containing phthalate esters was obtained from rice-husk-derived oil through a basification-acidification process. After separation by column chromatography, the solid precipitate was divided into two mono-component fractions, two bi-component fractions and a tetra-component fraction. The major compounds of the five fractions were all consisted of phthalate esters. Especially, phthalate esters accounted for a proportion higher than 80% in both Fractions I and II. The generation and precipitation mechanisms of phthalate esters were proposed. Phthalate esters were considered to be derived from a series of complicated chemical reactions of small molecules in the biomass pyrolysis process, and precipitated from bio-oil by catalytic hydrolysis and esterification.  相似文献   

11.
Few studies have examined the physiological and behavioral consequences of fisheries-induced selection. We evaluated how four generations of artificial truncation selection for vulnerability to recreational angling (i.e., stocks selected for high and low vulnerability [HVF and LVF, respectively]) affected cardiovascular physiology and parental care behavior in the teleost fish largemouth bass Micropterus salmoides. Where possible, we compared artificially selected fish to control fish (CF) collected from the wild. Although, compared to control fish, resting cardiac activity was approximately 18% lower for LVF and approximately 20% higher for HVF, maximal values did not vary among treatments. As a result, the HVF had less cardiac scope than either LVF or CF. Recovery rates after exercise were similar for HVF and CF but slower for LVF. When engaged in parental care activities, nesting male HVF were captured more easily than male LVF. During parental care, HVF also had higher turning rates and pectoral and caudal fin beat rates, increased vigilance against predators, and higher in situ swimming speeds. Energetics simulations indicated that to achieve the same level of growth, the disparity in metabolic rates would require HVF to consume approximately 40% more food than LVF. Selection for angling vulnerability resulted in clear differences in physiological and energetic attributes. Not only is vulnerability to angling a heritable trait, but high vulnerability covaries with factors including higher metabolic rates, reduced metabolic scope, and increased parental care activity. Despite these energetically costly differences, HVF and LVF of the same age were of similar size, suggesting that heightened food consumption in HVF compensated for added costs in experimental ponds. Ultimately, angling vulnerability appears to be a complex interaction of numerous factors leading to selection for very different phenotypes. If HVF are selectively harvested from a population, the remaining fish in that population may be less effective in providing parental care, potentially reducing reproductive output. The strong angling pressure in many freshwater systems, and therefore the potential for this to occur in the wild, necessitate management approaches that recognize the potential evolutionary consequences of angling.  相似文献   

12.
Polyhydroxyalkanoates (PHAs) production from low value substrates and/or byproducts represents an economical and environmental promising alternative to established industrial manufacture methods. Bio-oil resulting from the fast-pyrolysis of chicken beds was used as substrate to select a mixed microbial culture (MMC) able to produce PHA under feast/famine conditions. In this study a maximum PHA content of 9.2% (g/g cell dry weight) was achieved in a sequencing batch reactor (SBR) operated for culture selection. The PHA obtained with bio-oil as a carbon source was a copolymer composed by 70% of hydroxybutyrate (HB) and 30% of hydroxyvalerate (HV) monomers. Similar results have been reported by other studies that use real complex substrates for culture selection indicating that bio-oil can be a promising feedstock to produce PHAs using MMC. To the best of our knowledge this is the first study that demonstrated the use of bio-oil resulting from fast pyrolysis as a possibly feedstock to produce short chain length polyhydroxyalkanoates.  相似文献   

13.
A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for ''dry'' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The ''dry'' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s ''dry'' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.  相似文献   

14.
A series of acrylic acids and their structurally related compounds were evaluated for their binding affinity to four EP receptor subtypes (EP1-4). Starting from the initial hit 3, which was discovered in our in-house library, compounds 4 and 5 were identified as new chemical leads as candidates for further optimization towards a selective EP3 receptor antagonist. The identification process of these compounds and their pharmacokinetic profiles are presented.  相似文献   

15.
Microwave-assisted pyrolysis of microalgae for biofuel production   总被引:1,自引:0,他引:1  
Du Z  Li Y  Wang X  Wan Y  Chen Q  Wang C  Lin X  Liu Y  Chen P  Ruan R 《Bioresource technology》2011,102(7):4890-4896
The pyrolysis of Chlorella sp. was carried out in a microwave oven with char as microwave reception enhancer. The results indicated that the maximum bio-oil yield of 28.6% was achieved under the microwave power of 750 W. The bio-oil properties were characterized with elemental, GC-MS, GPC, FTIR, and thermogravimetric analysis. The algal bio-oil had a density of 0.98 kg/L, a viscosity of 61.2 cSt, and a higher heating value (HHV) of 30.7 MJ/kg. The GC-MS results showed that the bio-oils were mainly composed of aliphatic hydrocarbons, aromatic hydrocarbons, phenols, long chain fatty acids and nitrogenated compounds, among which aliphatic and aromatic hydrocarbons (account for 22.18% of the total GC-MS spectrum area) are highly desirable compounds as those in crude oil, gasoline and diesel. The results in this study indicate that fast growing algae are a promising source of feedstock for advanced renewable fuel production via microwave-assisted pyrolysis (MAP).  相似文献   

16.
The use of renewable energy sources is becoming increasingly necessary to mitigate global warming. Recently much research has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuels. This paper reports an approach for increasing the yield of bio-oil production from fast pyrolysis after manipulating the metabolic pathway in microalgae through heterotrophic growth. The yield of bio-oil (57.9%) produced from heterotrophic Chlorella protothecoides cells was 3.4 times higher than from autotrophic cells by fast pyrolysis. The bio-oil was characterized by a much lower oxygen content, with a higher heating value (41 MJ kg(-1)), a lower density (0.92 kg l(-1)), and lower viscosity (0.02 Pas) compared to those of bio-oil from autotrophic cells and wood. These properties are comparable to fossil oil. The research could contribute to the creation of a system to produce energy from microalgae, and also could have great commercial potential for liquid fuel production.  相似文献   

17.
In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500 °C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields.  相似文献   

18.
We analyzed five near-isogenic brown midrib hybrids in maize via pyrolysis/gas chromatography–mass spectrometry (Py/GC-MS) in order to determine how differing lignin composition and structure impacts individual bio-oil compounds. Twenty-six compounds were analyzed for differences among the five hybrids and between cob and stover materials. We found statistically significant differences for 9 compounds, when comparing the 5 hybrids, and 17 significant differences when comparing maize cobs with stover. Our data indicate that it may be possible to predict phenolic compounds within bio-oil based on cell wall lignin composition. The genetic variation observed in this study suggests that bio-oil quality can be improved by plant breeding.  相似文献   

19.
The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/wdry-biomass. This oil was converted into biodiesel with a 8.7 ± 1% w/wdry-biomass yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/wdry-biomass) and 28 ± 2% w/wdry-biomass of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass.  相似文献   

20.
Carrageenan extracted from Eucheuma spinosum harvested from three different coastal sea regions, where this alga has been mainly cultivated, were determined for their chemical and physical characteristics. The carrageenan was extracted from the seaweed using hot alkali followed by precipitation, drying, and milling. The carrageenan properties were determined in terms of yield, ash, mineral, sulfate content, functional group, molecular weight, and viscosity profile. Physical characteristics of carrageenan were evaluated by a texture analyzer for gel strength and a rapid visco analyzer for viscosity. The yield of carrageenan from Sumenep (34.81 ± 5.83%) and Takalar (37.16 ± 3.26%) was found to be relatively higher than that of Nusa Penida (25.81 ± 1.93%). The calcium content was higher than magnesium, potassium and sodium content, and no cadmium, lead, mercury, and arsenic detected in all carrageenan. The ash content was around 29%; while, the sulfate content was in the range of 30–32%, and those were not different in all carrageenan. The presence of sulfate content was identified by FTIR at absorption band of 1373 cm?1. It was found that the molecular weight of carrageenan from Takalar were relatively higher and the gel strength of carrageenan from Takalar were significantly higher than that of carrageenan from Nusa Penida and Sumenep. Likewise, upon cooling from 80 to 20°C, the viscosity profile of carrageenan from Takalar characterized by higher viscosity compared to that of carrageenan from Sumenep and Nusa Penida. These results indicated that carrageenan from Nusa Penida, Sumenep, and Takalar were identified as iota‐carrageenan with similar physico‐chemical characteristics except for the gel strength, viscosity profile upon cooling from 80 to 20°C and the yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号