首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ABC model of flower development, established through studies in eudicot model species, proposes that petal and stamen identity are under the control of B-class genes. Analysis of B- and C-class genes in the grass species rice and maize suggests that the C- and B-class functions are conserved between monocots and eudicots, with B-class genes controlling stamen and lodicule development. We have undertaken a further analysis of the maize B-class genes Silky1, the putative AP3 ortholog, and Zmm16, a putative PI ortholog, in order to compare their function with the Arabidopsis B-class genes. Our results show that maize B-class proteins interact in vitro to bind DNA as an obligate heterodimer, as do Arabidopsis B-class proteins. The maize proteins also interact with the appropriate Arabidopsis B-class partner proteins to bind DNA. Furthermore, we show that maize B-class genes are capable of rescuing the corresponding Arabidopsis B-class mutant phenotypes. This demonstrates B-class activity of the maize gene Zmm16, and provides compelling evidence that B-class gene function is conserved between monocots and eudicots.  相似文献   

3.
We functionally analysed two Nep1-like protein (NLP) genes from Botrytis elliptica (a specialized pathogen of lily), encoding proteins homologous to the necrosis and ethylene-inducing protein (NEP1) from Fusarium oxysporum. Single gene replacement mutants were made for BeNEP1 and BeNEP2 , providing the first example of transformation and successful targeted mutagenesis in this fungus. The virulence of both mutants on lily leaves was not affected. BeNEP1 and BeNEP2 were individually expressed in the yeast Pichia pastoris , and the necrosis-inducing activity was tested by infiltration of both proteins into leaves of several monocots and eudicots. Necrotic symptoms developed on the eudicots tobacco, Nicotiana benthamiana and Arabidopsis thaliana , and cell death was induced in tomato cell suspensions. No necrotic symptoms developed on leaves of the monocots rice, maize and lily. These results support the hypothesis that the necrosis-inducing activity of NLPs is limited to eudicots. We conclude that NLPs are not essential virulence factors and they do not function as host-selective toxins for B. elliptica .  相似文献   

4.
5.
6.
7.
8.
9.
An EST survey of the sugarcane transcriptome   总被引:8,自引:0,他引:8  
Its large genome and high polyploidy makes sugarcane (Saccharum spp.) a singularly challenging crop to study and improve using genetic approaches. To provide large numbers of functionally characterized candidate genes that might be tested for direct association (rather than distant linkage) with economically important traits, we sequenced the 5' ends of 9,216 clones from three cDNA libraries (apex, leaf and mature internode), representing 3,401 non-redundant sequences. About 57% of these sequences could be assigned a tentative function based on statistically significant similarity to previously characterized proteins or DNA sequences. Another 28% corresponded to previously identified, but uncharacterized, sequences. Some of the remaining unidentified sequences were predicted to be genes which could potentially be new to plants or unique to sugarcane. Comparisons of the sugarcane ESTs to a large sorghum EST database revealed similar compositions of expressed genes between some different tissues. Comparison to a detailed Arabidopsis protein database showed some highly conserved sequences, which might be useful DNA markers for pan-angiosperm comparative mapping. These EST sequences provide a foundation for many new studies to accelerate isolation of agronomically important genes from the cumbersome sugarcane genome.  相似文献   

10.
11.
Using a strategy requiring only modest computational resources, wheat expressed sequence tag (EST) sequences from various sources were assembled into contigs and compared with a nonredundant barley sequence assembly, with ESTs, with complete draft genome sequences of rice and Arabidopsis thaliana, and with ESTs from other plant species. These comparisons indicate that (i) wheat sequences available from public sources represent a substantial proportion of the diversity of wheat coding sequences, (ii) prediction of open reading frames in the whole genome sequence improves when supplemented with EST information from other species, (iii) a substantial number of candidates for novel genes that are unique to wheat or related species can be identified, and (iv) a smaller number of genes can be identified that are common to monocots and dicots but absent from Arabidopsis. The sequences in the last group may have been lost from Arabidopsis after descendance from a common ancestor. Examples of potential novel wheat genes and Triticeae-specific genes are presented.  相似文献   

12.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

13.
Zhang X  Zong J  Liu J  Yin J  Zhang D 《植物学报(英文版)》2010,52(11):1016-1026
WUSCHEL-related homeobox(WOX)genes form a large gene family specifically expressed in plants.They are known to play important roles in regulating the development of plant tissues and organs by determining cell fate.Recent available whole genome sequences allow us to do more comprehensive phylogenetic analysis of the WOX genes in plants.In the present study,we identified 11 and 21 WOXs from sorghum(Sorghum bicolor)and maize(Zea mays),respectively.The 72 WOX genes from rice(Oryza sativa),sorghum,maize,Arabidopsis(Arabidopsis thaliana)and poplar(Populus trichocarpa)were grouped into three well supported clades with nine subgroups according to the amino acid sequences of their homodomains.Their phylogenetic relationship was also supported by the observation of the motifs outside the homodomain.We observed the variation of duplication events among the nine sub-groups between monocots and eudicots,for instance,more gene duplication events of WOXs within subgroup A for monocots,while,less for dicots in this subgroup.Furthermore,we observed the conserved intron/exon structural patterns of WOX genes in rice,sorghum and Arabidopsis.In addition,WUS(Wuschel)-box and EAR(the ERF-associated amphiphilic repression)-like motif were observed to be conserved among several WOX subgroups in these five plants.Comparative analysis of expression patterns of WOX genes in rice and Arabidopsis suggest that the WOX genes play conserved and various roles in plants.This work provides insights into the evolution of the WOX gene family and is useful for future research.  相似文献   

14.
15.
To investigate the role of distinct phytochrome pools in photoperiodic timekeeping, we characterized four phytochrome genes in the short-day plant Pharbitis nil. Each PHY gene had different photosensory properties and sensitivity to night break that inhibits flowering. During extended dark periods, PHYE, PHYB, and PHYC mRNA accumulation exhibited a circadian rhythmicity indicative of control by an endogenous clock. Phylogenetic analysis recovered four clades of angiosperm phytochrome genes, phyA, phyB, phyC, and phyE. All except the phyE clade included sequences from both monocots and eudicots. In addition, phyA is sister to phyC and phyE sister to phyB, with gymnosperm sequences sister to either the phyA-phyC clade or to the phyB-phyE clade. These results suggest that a single duplication occurred in an ancestral seed plant before the divergence of extant gymnosperms from angiosperms and that two subsequent duplications occurred in an ancestral angiosperm before the divergence of monocots from eudicots. Thus in P. nil, a multigene family with different patterns of mRNA abundance in light and darkness contributes to the total phytochrome pool: one pool is light labile (phyA), whereas the other is light stable (phyB and phyE). In addition, PHYC mRNA represents a third phytochrome pool with intermediate photosensory properties.  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi stimulate root development and induce expression of mycorrhization-specific genes in both eudicots and monocots. Diffusible factors released by AM fungi have been shown to elicit similar responses in Medicago truncatula. Colonization of roots by AM fungi is inhibited by ethylene. We compared the effects of germinating spore exudates (GSE) from Glomus intraradices in monocots and in eudicots, their genetic control, and their regulation by ethylene. GSE modify root architecture and induce symbiotic gene expression in both monocots and eudicots. The genetic regulation of root architecture and gene expression was analyzed using M. truncatula and rice symbiotic mutants. These responses are dependent on the common symbiotic pathway as well as another uncharacterized pathway. Significant differences between monocots and eudicots were observed in the genetic control of plant responses to GSE. However, ethylene inhibits GSE-induced symbiotic gene expression and root development in both groups. Our results indicate that GSE signaling shares similarities and differences in monocots versus eudicots, that only a subset of AM signaling pathways has been co-opted in legumes for the establishment of root nodulation with rhizobia, and that regulation of these pathways by ethylene is a feature conserved across higher land plants.  相似文献   

17.
18.
被子植物系统发育深层关系研究: 进展与挑战   总被引:1,自引:0,他引:1  
曾丽萍  张宁  马红 《生物多样性》2014,22(1):21-434
被子植物系统发育学是研究被子植物及其各类群间亲缘关系与进化历史的学科。从20世纪90年代起, 核苷酸和氨基酸序列等分子数据开始被广泛运用于被子植物系统发育研究, 经过20多年的发展, 从使用单个或联合少数几个细胞器基因, 到近期应用整个叶绿体基因组来重建被子植物的系统发育关系, 目、科水平上的被子植物系统发育框架已被广泛接受。在这个框架中, 基部类群、主要的5个分支(即真双子叶植物、单子叶植物、木兰类、金粟兰目和金鱼藻目)、每个分支所包含的目以及几个大分支包括的核心类群等都具有高度支持。与此同时, 细胞器基因还存在一些固有的问题, 例如单亲遗传、系统发育信息量有限等, 因此近年来双亲遗传的核基因在被子植物系统发育研究中的重要性逐渐得到关注, 并在不同分类阶元的研究中都取得了一定进展。但是, 被子植物系统发育中仍然存在一些难以确定的关系, 例如被子植物5个分支之间的关系、真双子叶植物内部某些类群的位置等。本文简述了20多年来被子植物系统发育深层关系的主要研究进展, 讨论了被子植物系统发育学常用的细胞器基因和核基因的选用, 已经确定和尚未确定系统发育位置的主要类群, 以及研究中尚存在的问题和可能的解决方法。  相似文献   

19.
Polyploidy events have played an important role in the evolution of angiosperm genomes. Here, we demonstrate how genomic histories can increase phylogenetic resolution in a gene family, specifically the expansin superfamily of cell wall proteins. There are 36 expansins in Arabidopsis and 58 in rice. Traditional sequence-based phylogenetic trees yield poor resolution below the family level. To improve upon these analyses, we searched for gene colinearity (microsynteny) between Arabidopsis and rice genomic segments containing expansin genes. Multiple rounds of genome duplication and extensive gene loss have obscured synteny. However, by simultaneously aligning groups of up to 10 potentially orthologous segments from the two species, we traced the history of 49 out of 63 expansin-containing segments back to the ancestor of monocots and eudicots. Our results indicate that this ancestor had 15-17 expansin genes, each ancestral to an extant clade. Some clades have strikingly different growth patterns in the rice and Arabidopsis lineages, with more than half of all rice expansins arising from two ancestral genes. Segmental duplications, most of them part of polyploidy events, account for 12 out of 21 new expansin genes in Arabidopsis and 16 out of 44 in rice. Tandem duplications explain most of the rest. We were also able to estimate a minimum of 28 gene deaths in the Arabidopsis lineage and nine in rice. This analysis greatly clarifies expansin evolution since the last common ancestor of monocots and eudicots and the method should be broadly applicable to many other gene families.  相似文献   

20.
Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号