首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
本文采用荧光光谱法、紫外光谱法研究在生理条件(pH=7.4)下荷叶中紫云英苷(AST)与牛血清白蛋白(BSA)的相互作用。结果表明AST可与BSA结合并通过静态猝灭作用机制对BSA内源性荧光进行猝灭。在温度为298K及308K时,测得其猝灭速率常数(Kq)分别为4.31×1013L/mol/s和3.72×1013L/mol/s;结合常数(Kd)分别为2.009×105L/mol和0.927×105L/mol;结合位点数(n)分别为0.943和0.893。依据298K时测定的反应自由能变(△G0=-30.25kJ/mol),反应焓变(△H0=-59.02kJ/mol)及反应熵变(△S0=-96.54J/mol/K),结果发现AST与BSA间的结合反应可自发进行且其作用力主要表现为氢键和范德华力。此外,根据Frster非辐射能量转移理论得到AST与BSA之间的结合距离(r)为4.13nm,表明非辐射能量可从BSA转移至AST。  相似文献   

2.
采用荧光猝灭、同步荧光、三维荧光和圆二色谱,研究高良姜素与牛血清白蛋白(BSA)之间的相互作用。结果表明:高良姜素对BSA有较强的荧光猝灭作用,且为静态猝灭,并计算出不同温度下二者的结合常数(Ka)与结合位点数(n)分别为9.33×10~6L/mol、1.17(290.15 K),2.34×10~6L/mol、1.09(296.15 K),4.57×10~5L/mol、1.01(303.15 K),1.02×10~5L/mol、0.99(310.15 K)。由热力学参数确定它们之间的作用力主要是氢键和范德华力,利用竞争结合实验推断高良姜素的结合位点为BSA疏水空腔的SiteⅠ。同步荧光、三维荧光和圆二色谱显示高良姜素与BSA作用时更靠近色氨酸残基,使其周围的疏水性减弱,而对蛋白α-螺旋结构影响较小。  相似文献   

3.
采用紫外和荧光光谱研究了水溶性壳聚糖(CS)与牛血清白蛋白(BSA)之间的相互作用。结果表明:随CS浓度的增加,BSA的紫外吸收光谱表现出明显的增色效应和较小的紫移;CS可以猝灭BSA的内源荧光,其猝灭机理是CS与BSA形成复合物的静态猝灭。并且测定了在不同温度下,该反应的结合常数KA分别为6.92×106(298 K),5.01×106(308 K),3.31×106(318 K),CS与BSA以摩尔比1∶1结合。同时采用同步荧光光谱法探讨了CS对BSA构象的影响。  相似文献   

4.
采用紫外-可见吸收和荧光光谱,研究了壳聚糖钴与牛血清白蛋白(BSA)的相互作用。结果发现:随壳聚糖钴浓度的增加,BSA的紫外-可见吸收光谱表现增色效应和较小的蓝移;壳聚糖钴可以猝灭BSA的内源荧光,其猝灭机理属于静态猝灭。在室温下,壳聚糖钴与BSA的的结合常数KA为2.40×106。  相似文献   

5.
目的:应用牛血清白蛋白荧光猝灭法建立一种测定槐花中芦丁含量的新方法。方法:牛血清白蛋白(BSA)具有很强的内源荧光性,而芦丁溶液本身不产生荧光。当芦丁与BSA结合后,会导致其荧光强度下降,表面活性剂吐温-80(T-80)对体系有促进荧光猝灭作用。BSA在λex=338nm处的荧光猝灭程度与芦丁的量在一定浓度范围内呈良好的线性关系,据此建立测定槐花中芦丁含量的新方法。结果:该结合物的最大发射波长为λmax=338nm,与芦丁摩尔浓度在6×10-7~3.0×10-5mol.L-1范围内线性关系良好。其线性回归方程为ΔF=136.36CRu(×10-5mol.L-1)-0.5454,相关系数r=0.9976,检出限为1.58×10-7mol.L-1,RSD为2.8%~4.3%,加标回收率为97.6%~101.2%。结论:本方法操作简便、快速,用于实际样本的测定,结果满意。  相似文献   

6.
应用荧光光谱研究了羧甲基化壳聚糖季铵盐(CMCQA)与牛血清白蛋白(BSA)的相互作用.研究表明:CMCQA对BSA内源性荧光猝灭机制属于CMCQA和BSA形成复合物所引起的静态猝灭.在室温下,二者的结合常数为2.45×104 L/mol,结合位点数为1.04.二者主要靠静电引力相互作用.  相似文献   

7.
在模拟生理条件下,利用紫外和荧光光谱法研究栀子苷和牛血清白蛋白相互作用。通过Stern-Volmer方程和Lineweaver-Burk考察栀子苷对牛血清白蛋白内源性荧光的猝灭机制,分别在298 K、310 K和322 K下利用结合常数和结合位点数计算反应体系的热力学参数。结果表明,当温度为298 K、302 K和322 K时,栀子苷对牛血清白蛋白的猝灭常数分别为4.632×104、3.515×104和3.575×104mol/L,结合常数KA分别为1.805×104、2.546×104和4.165×104,结合位点数分别为1.334、1.112和0.944,栀子苷对牛血清白蛋白的猝灭方式属于静态猝灭;热力学参数ΔG0,ΔH0,ΔS0,表明栀子苷与牛血清白蛋白结合作用力为静电引力,根据Frster非辐射共振能量转移理论,计算出栀子苷与牛血清白蛋白之间的结合距离为1.78 nm。  相似文献   

8.
刘桂林  杨慧仙  魏竞智 《生物磁学》2011,(2):354-356,316
目的:应用牛血清白蛋白荧光猝灭法建立一种测定槐花中芦丁含量的新方法。方法:牛血清白蛋白(BSA)具有很强的内源荧光性,而芦丁溶液本身不产生荧光。当芦丁与BSA结合后,会导致其荧光强度下降,表面活性剂吐温-80(T-80)对体系有促进荧光猝灭作用。BSA在λex=338nm处的荧光猝灭程度与芦丁的量在一定浓度范围内呈良好的线性关系,据此建立测定槐花中芦丁含量的新方法。结果:该结合物的最大发射波长为λmax=338nm,与芦丁摩尔浓度在6×10-7-3.0×10-5mol.L-1范围内线性关系良好。其线性回归方程为ΔF=136.36CRu(×10-5mol.L-1)-0.5454,相关系数r=0.9976,检出限为1.58×10-7mol.L-1,RSD为2.8%-4.3%,加标回收率为97.6%~101.2%。结论:本方法操作简便、快速,用于实际样本的测定,结果满意。  相似文献   

9.
合成了壳寡糖和稀土离子La3+的配合物,利用红外光谱、紫外光谱和差热-热重手段对其结构和性质进行了表征。采用抑菌圈法考察了壳寡糖、壳寡糖-La对革兰氏阳性菌金黄色葡萄球菌和革兰氏阴性菌大肠杆菌的抑菌活性。此外,紫外光谱、荧光光谱和循环伏安曲线法研究壳寡糖-La与牛血清白蛋白(BSA)相互作用。结果表明壳寡糖、壳寡糖-La对两种细菌均具有较强的抑菌活性,且壳寡糖-La的抑菌活性强于壳寡糖;壳寡糖-La使BSA的内源荧光猝灭,猝灭机制为静态猝灭,并计算了室温下壳寡糖-La与BSA的结合常数和结合位点数分别为6.35×104L/mol和1.29。  相似文献   

10.
利用荧光光谱法研究了白藜芦醇与超氧化物歧化酶的相互作用。结果表明,白藜芦醇能使超氧化物歧化酶的内源荧光发生猝灭。研究在不同温度下白藜芦醇对超氧化物歧化酶的荧光猝灭作用,证明超氧化物歧化酶的荧光强度变化是由二者形成复合物所引起的,猝灭机制属于静态猝灭。相关荧光猝灭参数经Stern-Volmer方程分析,发现白藜芦醇与超氧化物歧化酶具有1个结合位点,并计算得到了不同温度下白藜芦醇与超氧化物歧化酶的结合常数(K_A):8.63×10~5(25℃)、7.75×10~5(35℃)和7.73×10~5(45℃)。通过计算热力学参数,可知白藜芦醇与超氧化物歧化酶的相互作用主要是由分子之间的静电作用引发的。并且,白藜芦醇-超氧化物歧化酶复合物的形成是伴随吉布斯自由能降低的自发反应。  相似文献   

11.
The interaction of Ce(3+) to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by Ce(3+) was a static quenching process, the binding constant is 6.70 × 10(5) , and the number of binding site is 1. The thermodynamic parameters (ΔH = -29.94 kJ mol(-1) , ΔG = -32.38 kJ mol(-1) , and ΔS = 8.05 J mol(-1) K(-1) ) indicate that electrostatic effect between the protein and the Ce(3+) is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of Ce(3+) changed the conformation of BSA.  相似文献   

12.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The characteristics of the interaction between reserpine and bovine serum albumin (BSA) were studied by fluorescence, UV-vis absorption and Fourier transform infrared (FT-IR) spectroscopy. Spectroscopic analysis revealed that fluorescence quenching of BSA by reserpine was through a static quenching procedure. The binding constant K(A) of reserpine with BSA at 293, 301 and 309 K was 1.63, 1.78 and 2.35 x 10(5) moL(-1) L respectively, which indicated degree of binding force between reserpine and BSA. There was one binding site between reserpine and BSA. The entropy and enthalpy changes were positive, indicating that interaction of reserpine and BSA was driven mainly by hydrophobic forces. The average binding distance between the donor (BSA) and the acceptor (reserpine) was about 3.84 nm based on the Forster non-radiation energy transfer theory. Results of synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of BSA were changed by the binding of reserpine. The results may provide important insights into the physiological activity of reserpine.  相似文献   

15.
Interaction of wogonin with bovine serum albumin   总被引:4,自引:0,他引:4  
The binding of wogonin with bovine serum albumin (BSA) was investigated at different temperatures by fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) at pH7.40. The association constants K were determined by Stern-Volmer equation based on the quenching of the fluorescence of BSA in the presence of wogonin, which were in agreement with the constants calculated by Scatchard plots. The thermodynamic parameters were calculated according to the Van't Hoff equation and the result indicated that DeltaH(0) and DeltaS(0) had a negative value (-12.02 kJ/mol) and a positive value (58.72 J/mol K), respectively. On the basis of the displacement experimental and the thermodynamic results, it is considered that wogonin binds to site I (subdomain IIA) of BSA mainly by hydrophobic interaction. The studied results by FT-IR and CD experiment indicated that the secondary structures of protein have been perturbed by the interaction of wogonin with BSA.  相似文献   

16.
The interaction between pyridoxine hydrochloride (VB6) and bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence spectroscopy and UV-visible absorption spectra. The quenching mechanism of fluorescence of BSA by VB6 was discussed. The number of binding sites n and observed binding constant K(b) was measured by fluorescence quenching method. The thermodynamic parameters DeltaH(theta), DeltaG(theta), DeltaS(theta) at different temperatures were calculated and the results indicate the binding reaction is mainly entropy-driven and hydrophobic interaction played major role in the reaction. The distance r between donor (BSA) and acceptor (VB6) was obtained according to FOrster theory of non-radiation energy transfer. Synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of BSA molecules with addition of VB6, the result indicates that the secondary structure of BSA molecules is changed in the presence of VB6.  相似文献   

17.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

19.
The binding reactions of lomefloxacin-copper(II) complex (LMF-Cu) or LMF to bovine serum albumin (BSA) in physiological solution were investigated by multi-spectroscopy. The binding constant, the number of binding sites and the binding distance between LMF-Cu or LMF and BSA were obtained by a fluorescence quenching method and according to the mechanism of Forster-type dipole-dipole non-radioactive energy-transfer, respectively. Enthalpy and entropy changes for two systems were calculated to be -7.970 kJ mol(-1) and 47.438 J mol(-1)K(-1) for LMF-BSA, -12.469 kJ mol(-1) and 33.542 J mol(-1)K(-1) for LMF-Cu-BSA, respectively. The highly positive values observed for the entropy give evidence for a strong interaction. The values of DeltaH and DeltaS in two systems are similar, indicating that electrostatic interactions in two systems play major role. The effect of LMF-Cu or LMF on the conformation of BSA was also analyzed by synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectra. The results showed that the presence of Cu ion in LMF-Cu can affect the conformation of BSA to some degree. All the results revealed that the addition of copper ion promotes the interaction of lomefloxacin with bovine serum albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号