首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway.  相似文献   

2.
Tyroserleutide (YSL) is a tripeptide compound that has exhibited inhibitory effects on hepatocellular carcinoma in our previous research. The mechanism of this antitumor activity involves the second messenger, Ca(2+). Ca(2+) influences cell function through the Ca(2+)/calmodulin (CaM) pathway, and abnormality of the Ca(2+)/CaM system correlates closely with the occurrence of tumors. In addition, CaM associates with phosphatidylinositol 3 kinase (PI3K), thereby enhancing the activity of PI3K, which promotes cell proliferation. In order to investigate its anti-tumor mechanism, we studied the effects of YSL on CaM protein expression and mRNA level, PI3K activity, PI3K regulatory subunit p85 protein expression and mRNA level, and the mRNA level of PI3K catalytic subunits p110alpha and p110gamma in human hepatocellular carcinoma BEL-7402 xenograft tumors in nude mice. Our results showed that YSL decreased the mRNA level and protein expression of CaM, inhibited the activity of PI3K, and reduced the mRNA level and protein expression of the PI3K regulatory subunit p85 and mRNA level of PI3K catalytic subunits p110alpha and p110gamma. Accordingly, it is suggestive that the anti-tumor effects of YSL may be mediated by down regulation of CaM and PI3K subunits p85 and p110, influencing the signal transduction pathway in the tumor cells and perhaps overcoming the dysfunctional PI3K activity in tumors.  相似文献   

3.
The central role of phosphatidylinositol 3-kinase (PI3K, p110α) signaling in allowing cancer cells to bypass normal growth-limiting controls has led to the development of PI3K(p110α) inhibitors. A challenge in targeting PI3K(p110α) relates to the diverse actions of the PI3K pathway in numerous cell types. Recent findings in mice deficient in PI3K(p110α) activity in the heart, demonstrate the critical role of this pathway in protecting the heart against pathological insults. Mice deficient in PI3K(p110α) displayed accelerated heart failure in response to dilated or hypertrophic cardiomyopathy. These results help explain the association of cardiomyopathy in cancer patients given tyrosine kinase inhibitors and raise concerns for the use of PI3K(p110α) inhibitors in cancer patients with cardiovascular risk factors. Interestingly, an inhibitor of the mammalian target of rapamycin (a downstream effector of PI3K), did not have adverse effects on the heart. A more complete understanding of the complex arms and interactions of the PI3K pathway will hopefully lead to the development of anti-cancer agents without cardiac complications.  相似文献   

4.
Differential activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway has been linked to cancer. Activation occurs through gene amplification and activating mutations. High-frequency mutations in the gene encoding the p110α catalytic subunit of PI3K (PIK3CA) have been observed in a variety of tumors including colon, brain, breast, ovarian, and gastric. Inhibition of PI3K kinase activity may provide a specific way to treat multiple types of human cancer. A scintillation proximity assay (SPA) was developed to detect phosphatidylinositol 3-kinase catalytic activity. Using this assay format, steady-state kinetic parameters were compared for the PI3K class IA enzymes p110α, p110β, and p110δ, each coexpressed with the regulatory subunit p85α or splice variant p55α. Inhibition by the natural product wortmannin and LY294002 was detected with potencies consistent with alternate assay formats. Other biochemical assay formats have been described for phosphoinositide 3-kinases but each has its unique limitations. The simple, inexpensive, sensitive high-throughput nature of the SPA format has advanced our knowledge of isoform-specific enzymology and will facilitate the discovery of novel PI3K inhibitors.  相似文献   

5.
The work of Reddy et al. (S. A. Reddy, J. A. Huang, and W. S. Liao, J. Biol. Chem. 272:29167-29173, 1997) reveals that phosphatidylinositol 3-kinase (PI3K) plays a role in transducing a signal from the occupied interleukin-1 (IL-1) receptor to nuclear factor kappaB (NF-kappaB), but the underlying mechanism remains to be determined. We have found that IL-1 stimulates interaction of the IL-1 receptor accessory protein with the p85 regulatory subunit of PI3K, leading to the activation of the p110 catalytic subunit. Specific PI3K inhibitors strongly inhibit both PI3K activation and NF-kappaB-dependent gene expression but have no effect on the IL-1-stimulated degradation of IkappaBalpha, the nuclear translocation of NF-kappaB, or the ability of NF-kappaB to bind to DNA. In contrast, PI3K inhibitors block the IL-1-stimulated phosphorylation of NF-kappaB itself, especially the p65/RelA subunit. Furthermore, by using a fusion protein containing the p65/RelA transactivation domain, we found that overexpression of the p110 catalytic subunit of PI3K induces p65/RelA-mediated transactivation and that the specific PI3K inhibitor LY294,002 represses this process. Additionally, the expression of a constitutively activated form of either p110 or the PI3K-activated protein kinase Akt also induces p65/RelA-mediated transactivation. Therefore, IL-1 stimulates the PI3K-dependent phosphorylation and transactivation of NF-kappaB, a process quite distinct from the liberation of NF-kappaB from its cytoplasmic inhibitor IkappaB.  相似文献   

6.
Genetic variations in oncogenes can often promote uncontrolled cell proliferation by altering the structure of the encoded protein, thereby altering its function. The PI3KCA oncogene that encodes for p110α, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), is one the most frequently mutated oncogenes in humans. PI3K plays a pivotal role in cell division. PI3K consists of two subunits: the catalytic (p110α) and regulatory (p85α). The regulatory subunit usually controls the catalytic subunit and switches off the enzyme when not required. It is believed that mutations in PI3KCA gene can alter the control of p85α over p110α and can sustain p110α in a prolonged active state. This in turn results in uncontrolled cell division. In this study, we investigate the pathogenic role of two point mutations: E542K and E545K on p110α subunit and how they alter its binding with the regulatory subunit. Molecular interaction and molecular dynamic simulation analysis are performed to study the dynamic behaviour of native and mutant structures at atomic level. Mutant p110α showed less interaction with its regulatory partner p85α than the native did, due to its expanded and rigid structure. Our analysis clearly points out that the structural and functional consequences of the mutations could promote tumour proliferation.  相似文献   

7.
Some Gq-coupled receptors have been shown to antagonize growth factor activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. We used a constitutively active Galphaq(Q209L) mutant to explore the effects of Galphaq activation on signaling through the PI3K/Akt pathway. Transient expression of Galphaq(Q209L) in Rat-1 fibroblasts inhibited Akt activation induced by platelet-derived growth factor or insulin treatment. Expression of Galphaq(Q209L) also attenuated Akt activation promoted by coexpression of constitutively active PI3K in human embryonic kidney 293 cells. Galphaq(Q209L) had no effect on the activity of an Akt mutant in which the two regulatory phosphorylation sites were changed to acidic amino acids. Inducible expression of Galphaq(Q209L) in a stably transfected 293 cell line caused a decrease in PI3K activity in p110alpha (but not p110beta) immunoprecipitates. Receptor activation of Galphaq also selectively inhibited PI3K activity in p110alpha immunoprecipitates. Active Galphaq still inhibited PI3K/Akt in cells pretreated with the phospholipase C inhibitor U73122. Finally, Galphaq(Q209L) co-immunoprecipitated with the p110alpha-p85alpha PI3K heterodimer from lysates of COS-7 cells expressing these proteins, and incubation of immunoprecipitated Galphaq(Q209L) with purified recombinant p110alpha-p85alpha in vitro led to a decrease in PI3K activity. These results suggest that agonist binding to Gq-coupled receptors blocks Akt activation via the release of active Galphaq subunits that inhibit PI3K. The inhibitory mechanism seems to be independent of phospholipase C activation and might involve an inhibitory interaction between Galphaq and p110alpha PI3K.  相似文献   

8.
A high-fat diet containing polyunsaturated fatty acids (PUFA: n-3 or n-6) given for 4 wk to 5-wk-old male Wistar rats induced a clear hyperglycemia (10.4 +/- 0.001 mmol/l for n-6 rats and 10.1 +/- 0.001 for n-3 rats) and hyperinsulinemia (6.6 +/- 0.8 ng/ml for n-6 rats and 6.4 +/- 1.3 for n-3 rats), signs of insulin resistance. In liver, both diets (n-3 and n-6) significantly reduced insulin receptor (IR) number, IR and IR substrate (IRS)-1 tyrosine phosphorylation, and phosphatidylinositol (PI) 3'-kinase activity. In contrast, in leg muscle, IR density, as determined by Western blotting, was not affected, whereas IR and IRS-1 tyrosine phosphorylation in response to insulin treatment was restored in animals fed with n-3 PUFA to normal; in n-6 PUFA, the phosphorylation was depressed, as evidenced by Western blot analysis using specific antibodies. In addition, PI 3'-kinase activity and GLUT-4 content in muscle were maintained at normal levels in rats fed with n-3 PUFA compared with rats fed a normal diet. In rats fed with n-6 PUFA, both PI 3'-kinase activity and GLUT-4 content were reduced. Furthermore, in adipose tissue and using RT-PCR, we show that both n-3 and n-6 PUFA led to slight or strong reductions in p85 expression, respectively, whereas GLUT-4 and leptin expression was depressed in n-6 rats. The expression was not affected in n-3 rats compared with control rats. In conclusion, a high-fat diet enriched in n-3 fatty acids maintained IR, IRS-1 tyrosine phosphorylation, and PI 3'-kinase activity and total GLUT-44 content in muscle but not in liver. A high-fat diet (n-3) partially altered the expression of p85 but not that of GLUT-4 and leptin mRNAs in adipose tissue.  相似文献   

9.
Receptor-regulated class I phosphoinositide 3-kinases (PI3K) phosphorylate the membrane lipid phosphatidylinositol (PtdIns)-4,5-P2 to PtdIns-3,4,5-P3. This, in turn, recruits and activates cytosolic effectors with PtdIns-3,4,5-P3-binding pleckstrin homology (PH) domains, thereby controlling important cellular functions such as proliferation, survival, or chemotaxis. The class IB p110 gamma/p101 PI3K gamma is activated by G beta gamma on stimulation of G protein-coupled receptors. It is currently unknown whether in living cells G beta gamma acts as a membrane anchor or an allosteric activator of PI3K gamma, and which role its noncatalytic p101 subunit plays in its activation by G beta gamma. Using GFP-tagged PI3K gamma subunits expressed in HEK cells, we show that G beta gamma recruits the enzyme from the cytosol to the membrane by interaction with its p101 subunit. Accordingly, p101 was found to be required for G protein-mediated activation of PI3K gamma in living cells, as assessed by use of GFP-tagged PtdIns-3,4,5-P3-binding PH domains. Furthermore, membrane-targeted p110 gamma displayed basal enzymatic activity, but was further stimulated by G beta gamma, even in the absence of p101. Therefore, we conclude that in vivo, G beta gamma activates PI3K gamma by a mechanism assigning specific roles for both PI3K gamma subunits, i.e., membrane recruitment is mediated via the noncatalytic p101 subunit, and direct stimulation of G beta gamma with p110 gamma contributes to activation of PI3K gamma.  相似文献   

10.
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.  相似文献   

11.
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin‐like growth factor I (IGF‐I) most likely represents the main survival signal during neuronal differentiation. IGF‐I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF‐I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3‐kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110α or β) associated with one of a large family of regulatory subunits (p85α, p85β, p55γ, p55α, and p50α). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55γ regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55γ is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF‐IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39–50, 2001  相似文献   

12.
v-Crk, an oncogene product of avian sarcoma virus CT10, efficiently transforms chicken embryo fibroblasts (CEF). We have recently reported that constitutive activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway plays a critical role in the v-Crk-induced transformation of CEF. In the present study we investigated the molecular mechanism by which v-Crk activates the PI3K/AKT pathway. First, we found that v-Crk promotes the association of the p85 regulatory subunit of PI3K with focal adhesion kinase (FAK) by inducing the phosphorylation of the Y397 residue in FAK. This FAK phosphorylation needs activation of the Src family tyrosine kinase(s) for which the v-Crk SH2 domain is responsible. v-Crk was unable to activate the PI3K/AKT pathway in FAK-null cells, indicating the functional importance of FAK. In addition, we found that H-Ras is also required for the activation of the PI3K/AKT pathway. The v-Crk-induced activation of AKT was greatly enhanced by the overexpression of H-Ras or its guanine nucleotide exchange factor mSOS, which binds to the v-Crk SH3 domain, whereas a dominant-negative mutant of H-Ras almost completely suppressed this activation. Furthermore, we showed that v-Crk stimulates the interaction of H-Ras with the Ras binding domain in the PI3K p110 catalytic subunit. Our data indicated that the v-Crk-induced activation of PI3K/AKT pathway was cooperatively achieved by two distinct interactions. One is the interaction of p85 with tyrosine-phosphorylated FAK promoted by the v-Crk SH2 domain, and another is the interaction of p110 with H-Ras dictated by the v-Crk SH3 domain.  相似文献   

13.
The modulation of phosphoinositide 3-kinase (PI3K) activity influences the quality of cellular responses triggered by various receptor tyrosine kinases. Protein kinase C (PKC) has been reported to phosphorylate signalling molecules upstream of PI3K and thereby it may affect the activation of PI3K. Here, we provide the first evidence for a direct effect of a PKC isoenzyme on the activity of PI3K. PKCalpha but not PKCepsilon phosphorylated the catalytic subunit of the p110alpha/p85alpha PI3K in vitro in a manner inhibited by the PKC inhibitor bisindolylmaleimide I (BIM I). The incubation of PI3K with active PKCalpha resulted in a significant decrease in its lipid kinase activity and this effect was also attenuated by BIM I. We conclude that PKCalpha is able to modulate negatively the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit.  相似文献   

14.
During differentiation, expression of protein phosphatase-2Calpha (PP2Calpha) is increased in 3T3-L1 adipocytes. To elucidate the role of PP2Calpha in insulin signaling, we overexpressed wild-type (WT) PP2Calpha by adenovirus-mediated gene transfer in 3T3-L1 adipocytes. Overexpression of PP2Calpha-WT enhanced the insulin sensitivity of glucose uptake without any changes in the early steps of insulin signaling. Infection with adenovirus 5 expressing PP2Calpha-WT increased phosphatidylinositol 3-kinase (PI3K) activities in the immunoprecipitate using antibody against the p85 or p110 subunit under both basal and insulin-stimulated conditions, followed by activation of downstream steps in the PI3K pathway, such as phosphorylation of Akt, glycogen synthase kinase-3, and atypical protein kinase C. In contrast, overexpression of the phosphatase-defective mutant PP2Calpha(R174G) did not produce such effects. Furthermore, overexpression of PP2Calpha-WT (but not PP2Calpha(R174G)) decreased the (32)P-labeled phosphorylation state as well as the gel mobility shift of the p85 subunit, suggesting that dephosphorylation of the p85 subunit by PP2Calpha activation might stimulate PI3K catalytic activity. Moreover, knockdown of PP2Calpha by transfection of small interfering RNA led to a significant decrease in Akt phosphorylation. In addition, microinjection of anti-PP2Calpha antibody or PP2Calpha small interfering RNA led to decreased insulin-stimulated GLUT4 translocation. In conclusion, PP2Calpha is a new positive regulator of insulin sensitivity that acts through a direct activation of PI3K in 3T3-L1 adipocytes.  相似文献   

15.
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K ATP-binding site determine the lipid substrate specificity of the class IA PI3Kalpha (p85/p110alpha). Transfer of such activation loop sequences from class II PI3Ks, class III PI3Ks, and a related mammalian target of rapamycin (FRAP) into p110alpha turns the lipid substrate specificity of the resulting hybrid protein into that of the donor protein, while leaving the protein kinase activity unaffected. All resulting hybrids lacked the ability to produce phosphatidylinositol 3,4,5-trisphosphate in intact cells. Amino acid substitutions and structure modeling showed that two conserved positively charged (Lys and Arg) residues in the activation loop are crucial for the functionality of class I PI3Ks as phosphatidylinositol 4,5-bisphosphate kinases. By transient transfecion of 293 cells, we show that p110alpha hybrids, although unable to support lipid-dependent PI3K signaling, such as activation of protein kinase B/Akt and p70(S6k), retain the capability to associate with and phosphorylate insulin receptor substrate-1, with the same specificity and higher efficacy than wild type PI3Kalpha. Our data lay the basis for the understanding of the class I PI3K substrate selectivity and for the use of PI3Kalpha hybrids to dissect PI3Kalpha function as lipid and protein kinase.  相似文献   

16.
CXCL12/CXCR4 plays an important role in metastasis of gastric carcinoma. Rapamycin has been reported to inhibit migration of gastric cancer cells. However, the role of mTOR pathway in CXCL12/CXCR4-mediated cell migration and the potential of drugs targeting PI3K/mTOR pathway remains unelucidated. We found that CXCL12 activated PI3K/Akt/mTOR pathway in MKN-45 cells. Stimulating CHO-K1 cells expressing pEGFP-C1-Grp1-PH fusion protein with CXCL12 resulted in generation of phosphatidylinositol (3,4,5)-triphosphate, which provided direct evidence of activating PI3K by CXCL12. Down-regulation of p110β by siRNA but not p110α blocked phosphorylation of Akt and S6K1 induced by CXCL12. Consistently, p110β-specific inhibitor blocked the CXCL12-activated PI3K/Akt/mTOR pathway. Moreover, CXCR4 immunoprecipitated by anti-p110β antibody increased after CXCL12 stimulation and G(i) protein inhibitor pertussis toxin abrogated CXCL12-induced activation of PI3K. Further studies demonstrated that inhibitors targeting the PI3K/mTOR pathway significantly blocked the chemotactic responses of MKN-45 cells triggered by CXCL12, which might be attributed primarily to inhibition of mTORC1 and related to prevention of F-actin reorganization as well as down-regulation of active RhoA, Rac1, and Cdc42. Furthermore, rapamycin inhibited the secretion of CXCL12 and the expression of CXCR4, which might form a positive feedback loop to further abolish upstream signaling leading to cell migration. Finally, we found cells expressing high levels of cxcl12 were sensitive to rapamycin in its activity inhibiting migration as well as proliferation. In summary, we found that the mTOR pathway played an important role in CXCL12/CXCR4-mediated cell migration and proposed that drugs targeting the mTOR pathway may be used for the therapy of metastatic gastric cancer expressing high levels of cxcl12.  相似文献   

17.
We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol (3,4,5)-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation.  相似文献   

18.
Shin YK  Li Y  Liu Q  Anderson DH  Babiuk LA  Zhou Y 《Journal of virology》2007,81(23):12730-12739
Recent studies have demonstrated that influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by binding of influenza NS1 protein to the p85 regulatory subunit of PI3K. Our previous study proposed that two polyproline motifs in NS1 (amino acids 164 to 167 [PXXP], SH3 binding motif 1, and amino acids 213 to 216 [PPXXP], SH3 binding motif 2) may mediate binding to the p85 subunit of PI3K. Here we performed individual mutational analyses on these two motifs and demonstrated that SH3 binding motif 1 contributes to the interactions of NS1 with p85β, whereas SH3 binding motif 2 is not required for this process. Mutant viruses carrying NS1 with mutations in SH3 binding motif 1 failed to interact with p85β and induce the subsequent activation of PI3K/Akt pathway. Mutant virus bearing mutations in SH3 binding motif 2 exhibited similar phenotype as the wild-type (WT) virus. Furthermore, viruses with mutations in SH3 binding motif 1 induced more severe apoptosis than did the WT virus. Our data suggest that SH3 binding motif 1 in NS1 protein is required for NS1-p85β interaction and PI3K/Akt activation. Activation of PI3K/Akt pathway is beneficial for virus replication by inhibiting virus induced apoptosis through phosphorylation of caspase-9.  相似文献   

19.
Phosphatidylinositol-3 kinase (PI3K) is a family of enzymes that phosphorylates the D3 position of phosphoinositides in membranes which can then act as a second messenger and affect many essential cellular processes such as survival, proliferation and differentiation. Class IA PI3K is composed of two subunits: a regulatory subunit, p85, and a catalytic subunit, p110. The p85 subunit is composed of several adapter domains which, upon interaction with the appropriate molecules, transmit the signal to activate p110. We have used the spontaneously immortalized oligodendrocyte cell line, CG4, to examine the role of PI3K in maturation of the oligodendrocyte. We show that overexpression of the p85 subunit enhances expression of myelin basic protein (MBP) upon differentiation of CG4 cells and primary oligodendrocytes. In experiments in CG4 cells, neither cotransfection with the tumor suppressor PTEN, which dephosphorylates the D3 position of phosphoinositides, nor inhibition of PI3K activity with wortmannin mimics this effect. Further, we have shown that this effect is dependent on the coexpression of the two SH2 domains within p85. Thus, the p85-mediated enhancement of MBP promoter activity in oligodendrocytes appears to be independent of PI3K activity and dependent on the adapter functions of the p85 subunit's SH2 domains.  相似文献   

20.
The signaling pathways that control T cell differentiation have only begun to be elucidated. Using T cell lines, it has been shown that class IA phosphatidylinositol 3-kinase (PI3K), a heterodimer composed of a p85 regulatory and a p110 catalytic subunit, is activated after TCR stimulation. Nonetheless, the contribution of p85/p110 PI3K isoforms in T cell development has not been described. Mice deficient in the other family of class I PI3K, p110gamma, which is regulated by G protein-coupled receptors, exhibit reduced thymus size. Here we examine T cell development in p110gamma-deficient mice and in mice expressing an activating mutation of the p85 regulatory subunit, p65(PI3K), in T cells. We show that p110gamma-deficient mice have a partial defect in pre-TCR-dependent differentiation, which is restored after expression of the p65(PI3K) activating mutation. Genetic alteration of both PI3K isoforms also affects positive selection; p110gamma deletion decreased and p65(PI3K) expression augmented the CD4(+)/CD8(+) differentiation ratio. Finally, data are presented showing that both PI3K isoforms influenced mature thymocyte migration to the periphery. These observations underscore the contribution of PI3K in T cell development, as well as its implication in determining the CD4(+)/CD8(+) T cell differentiation ratio in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号