首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
以盐敏感型山定子实生苗和耐盐型珠眉海棠组培苗为材料,采用灌注离心技术研究了叶片质外体和共质体中Na^+和Ca^2+浓度的变化。结果表明:随盐胁迫强度的加强,叶片水势下降;叶片Na^+含量、质外体和共质体中Na^+浓度升高,珠眉海棠明显低于山定子;叶片Ca^2+含量、共质体Ca^2+浓度随盐胁迫的增加而升高,但珠眉海棠高于山定子,50mmol/L NaCl胁迫对质外体Ca^2+没有明显影响,100mmol/LNaCl胁迫下增加,珠眉海棠低于山定子;叶片共质体与质外体中Na^+浓度的比值,珠眉海棠明显高于山定子,说明在盐胁迫下珠眉海棠具有较强的离子区域化能力,离子区域化是珠眉海棠的主要耐盐机制。  相似文献   

2.
电刺激或降低细胞外的镁离子浓度,会引起N-甲基-D-天门冬氨酸受体通道的开放,造成胞内外离子浓度失平衡.使用离子选择性微电极结合脑片技术,对电刺激和低镁溶液引起的大鼠内嗅皮层游离钙和钾离子浓度及电位的动态变化的规律进行了研究。实验结果表明,电刺激和低镁溶液引起的内嗅皮层游离钙和钾离子浓度的改变,在细胞层Ⅳ-Ⅴ(皮层表面下900-1100μm)变化最大。低镁溶液引起游离钙离子浓度下降,同时钾离子浓度呈双相变化,即先增加后减少。低镁溶液灌流内嗅皮层脑片数小时后,胞外钙离子浓度持续地停留在低浓度水平,而钾离子浓度受影响较小.  相似文献   

3.
把6天株龄的大麦(Hordeum vylgare L.)初生叶的下表皮剥去后,以含pH6.5的200mmol/L NaCl缓冲液真空渗洗叶片36min,获得的细胞间隙洗液含有水溶性或弱离子结合态的质外体蛋白质和酶。渗洗过的叶片用缓冲液磨成匀浆和离心后,上清液含原质体蛋白质和酶。用1mmol/L NaCl可溶解离子结合态的质外体蛋白质和酶,两条(25和31kD)和7条(22,28,30,51,55,60和71kD)蛋白质带只分别在含有200mmol/L和1mmol/L NaGl的质外体提取液中测得。机械创伤诱导两条(32和33kD)可溶于200mmol/L NaCl的质外体蛋白带,在质外体还测到3条可溶于200mmol/L NaCl和4条可溶于1mmol/L NaCl的苹果酸脱氢酶同工酶。在质外体和共质体两部分均发现有酯酶Ⅰ同工酶,但移向阴极的酯酶同工酶Ⅰ只见于溶在200mmol/L NaCl的质外体中。移向阳极的酯酶Ⅱ同工酶仅见于共质体中。  相似文献   

4.
钠钾ATP酶与阳离子主动运输   总被引:1,自引:0,他引:1  
高等生物能维持体内环境的相对恒定。一般讲,细胞内液钠浓度低,钾浓度高;细胞外液钠浓度高,钾浓度低。如人心肌细胞内钾离子浓度为细胞外液的38倍,而钠离子浓度,外液为内液的36倍。这种离子分布的差异,是由于细胞膜不断将钠输出细胞外,将钾输入细胞内所致。这种逆电化学梯度地运输离子的过程是一耗能过程,通常称为一价阳离子主动运输,或称“钠钾泵”。1957年,Skoul从蟹神经的微粒体组份中  相似文献   

5.
根系抗坏血酸在小麦幼苗铝耐性中的作用   总被引:5,自引:1,他引:4  
以3个铝耐性不同的小麦品种为材料,研究了Al胁迫下小麦幼苗根系质外体和共质体抗坏血酸含量以及抗坏血酸氧化酶和过氧化物酶活性的变化。结果显示,Al耐性品种‘Atlas 66’质外体中抗坏血酸总含量随着处理 Al浓度的增加显著升高,而在Al敏感品种‘Scout 66’和‘扬麦9号’中显著降低。同时,‘Atlas 66’质外体中还原型抗坏血酸含量在高浓度Al处理下显著升高,2个敏感品种则在低浓度Al处理下还原型抗坏血酸含量略有升高。耐性品种‘Atlas 66’根系共质体还原型抗坏血酸和抗坏血酸总量在5~40μmol·L-1AlCl3处理下无显著变化,而在 2个敏感品种中则随处理Al浓度的增加显著下降。80μmol·L-1AlCl3处理下‘Atlas 66’根系质外体和共质体抗坏血酸氧化酶以及抗坏血酸过氧化物酶活性与对照相比均无显著变化,而在‘Scout 66’和‘扬麦9号’中则均显著降低。因此Al胁迫下‘Atlas 66’根系质外体抗坏血酸含量的升高和共质体抗坏血酸含量的维持以及Al毒害下抗坏血酸利用率较高可能是其Al耐性的一个重要机制。  相似文献   

6.
通过缩小叶面积和去茎尖改变源库比率,以调节韧皮部卸出的途径,证明了韧皮部卸出的共质体与质外体途径的季节变化,和由对氯高汞苯磺酸所诱发的从质外体向共质体途径的转变,是与光合产物的输入有关。缩小叶面积而降低源库比率,能增加夏季生长植株茎韧皮部的质外体卸出,但对冬季生长植株无影响。去尖而增加源库比率,则促进共质体卸出。赤霉酸和激动素能促进共质体的横向转运,但对质外体转运无作用。当质外体为主要运输途径时,赤霉酸和激动素开启共质体途径。赤霉酸和激动素刺激光合产物,通过共质体从筛管一伴胞复合体向韧皮部薄壁纽胞输送,并可能在韧皮部薄壁细胞被动扩散到自由空间。由此可进一步说明蔗糖在激素处理部位自由空间的增加。  相似文献   

7.
研究了耐盐的大麦和不耐盐的小麦幼苗在 NaCl 胁迫下叶片脂质过氧化作用、膜系统伤害、叶肉细胞超微结构变化三者之间的关系。在盐胁迫初期,叶肉细胞能维持较高的 SOD 活性,脂质过氧化作用较弱,膜系统基本完整;随着胁迫强度加大,SOD 活性下降,脂质过氧化作用加强,膜透性增加,细胞内的电解质和紫外吸收物质大量外渗,细胞器破坏,甚至整个叶肉细胞结构崩溃。试验结果表明盐胁迫下超微结构的变化反映了细胞内膜系统的紊乱和伤害,而膜系统的伤害可能是脂质过氧化作用增强的结果。  相似文献   

8.
不同钙离子浓度对日本沼虾感光器细胞超微结构的影响   总被引:2,自引:0,他引:2  
为了进一步研究细胞外钙离子浓度变化对甲壳动物感光细胞超微结构的影响,应用透射电子显微镜显示了日本沼虾感光细胞,在暗适应时高钙离子浓度中温育的感光器细胞的感杆束直径下降,微绒毛排列零乱;多囊体、板膜体数量增加;色素颗粒散布在细胞质中,呈现出光适应的结构特征。而温育在低钙离子溶液和生理溶液中的感光器细胞结构相同,呈现出暗适应的结构特征。另外,细胞器中储存的钙离子也受细胞外钙离子浓度的影响,在高钙离子溶液中温育后细胞器储存的钙离子量增加,膜下储泡囊、多囊体、线粒体、色素颗粒等细胞器中的焦锑酸钙结晶颗粒比温育在低钙溶液中的细胞明显增多。结果显示,细胞外钙离子浓度变化引起细胞内钙离子浓度变化,从而影响感光器细胞的结构而影响其生理功能。  相似文献   

9.
植物组织电阻及其应用   总被引:3,自引:0,他引:3  
植物组织可分为质外体和共质体,其中,质外体由细胞壁、细胞间隙和导管组成,共质体由胞间连丝把相邻的原生质贯穿在一起而成。对于一鲜嫩植物组织来说,可将组织中质外体部分和共质体部分分别看作一连续整体,在两者之间有近似绝缘层的高电阻膜存在。此细胞膜的比电阻一般可达10~3—10~4Ω·cm,和5nm厚的油层相近。因此,可以近似地将共质体和质外体看作是电学上相并联的两条支路。其中,共质体电阻由膜电阻、胞内电阻和胞问电阻相互串联而成。由于胞内离子强度较  相似文献   

10.
植物体内水和溶质的运输,可分为短距离运输和长距离运输两种类型。短距离运输是指从细胞到细胞的运输,它包括共质体运输和非原质体(质外体)运输。长距离运输是指通过维管系统进行的运输。在这里,我们只讨论短距离运输。短距离运输,包括共质体运输和非原质体运输。植物细胞内的原生质体,由胞间连丝联系起来,形成一个整体,即共质体。所以,我们把从细胞到细胞通过胞间连丝的运输称为共质  相似文献   

11.
Little is known about how salinity affects ions distribution in root apoplast and symplast. Using x-ray microanalysis, ions distribution and the relative contribution of apoplastic and symplastic pathways for delivery of ions to root xylem were studied in sunflower plants exposed to moderate salinity (EC=6). Cortical cells provided a considerably extended Na+ and Cl- storage facility. Their contents are greater in cytoplasm (root symplast) as compared to those in intercellular spaces (root apoplast). Hence, in this level of salinity, salt damage in sunflower is not dehydration due to extracellular accumulation of sodium and chloride ions, as suggested in the Oertli hypothesis. On the other hand, reduction in calcium content due to salinity in intercellular space is less than reduction in the cytoplasm of cortical cells. It seems that sodium inhibits the radial movement of calcium in symplastic pathway more than in the apoplastic pathway. The cell wall seems to have an important role in providing calcium for the apoplastic pathway. Redistribution of calcium from the cell wall to intercellular space is because of its tendency towards xylem through the apoplastic pathway. This might be a strategy to enhance loading of calcium to xylem elements and to reduce calcium deficiency in young leaves under salinity. This phenomenon may be able to increase salt tolerance in sunflower plants. Supplemental calcium has been found to be effective in reducing radial transport of Na+ across the root cells and their loading into the xylem, but not sodium absorption. Supplemental calcium enhanced Ca2+ uptake and influx into roots and transport to stele.  相似文献   

12.
This work describes, for the first time, the changes taking place in the antioxidative system of the leaf apoplast in response to plum pox virus (PPV) in different Prunus species showing different susceptibilities to PPV. The presence of p-hydroxymercuribenzoic acid (pHMB)-sensitive ascorbate peroxidase (APX) (class I APX) and pHMB-insensitive APX (class III APX), superoxide dismutase (SOD), peroxidase (POX), NADH-POX, and polyphenoloxidase (PPO) was described in the apoplast from both peach and apricot leaves. PPV infection produced different changes in the antioxidant system of the leaf apoplast from the Prunus species, depending on their susceptibility to the virus. In leaves of the very susceptible peach cultivar GF305, PPV brought about an increase in class I APX, POX, NADH-POX, and PPO activities. In the susceptible apricot cultivar Real Fino, PPV infection produced a decrease in apoplastic POX and SOD activities, whereas a strong increase in PPO was observed. However, in the resistant apricot cultivar Stark Early Orange, a rise in class I APX as well as a strong increase in POX and SOD activities was noticed in the apoplastic compartment. Long-term PPV infection produced an oxidative stress in the apoplastic space from apricot and peach plants, as observed by the increase in H2O2 contents in this compartment. However, this increase was much higher in the PPV-susceptible plants than in the resistant apricot cultivar. Only in the PPV-susceptible apricot and peach plants was the increase in apoplastic H2O2 levels accompanied by an increase in electrolyte leakage. No changes in the electrolyte leakage were observed in the PPV-inoculated resistant apricot leaves, although a 42% increase in the apoplastic H2O2 levels was produced. Two-dimensional electrophoresis analyses revealed that the majority of the polypeptides in the apoplastic fluid had isoelectric points in the range of pI 4-6. The identification of proteins using MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) and peptide mass fingerprinting analyses showed the induction of a thaumatin-like protein as well as the decrease of mandelonitrile lyase in peach apoplast due to PPV infection. However, most of the selected polypeptides showed no homology with known proteins. This fact emphasizes that, at least in Prunus, most of the functions of the apoplastic space remain unknown. It is concluded that long-term PPV infection produced an oxidative stress in the leaf apoplast, contributing to the deleterious effects produced by PPV infection in leaves of inoculated, susceptible Prunus plants.  相似文献   

13.
Sang S  Li X  Gao R  You Z  Lü B  Liu P  Ma Q  Dong H 《Plant molecular biology》2012,79(4-5):375-391
Harpin proteins secreted by phytopathogenic bacteria have been shown to activate the plant defense pathway, which involves transduction of a hydrogen peroxide (H(2)O(2)) signal generated in the apoplast. However, the way in which harpins are recognized in the pathway and what role the apoplastic H(2)O(2) plays in plant defenses are unclear. Here, we examine whether the cellular localization of Hpa1(Xoo), a harpin protein produced by the rice bacterial leaf blight pathogen, impacts H(2)O(2) production and pathogen resistance in Arabidopsis thaliana. Transformation with the hpa1 (Xoo) gene and hpa1 (Xoo) fused to an apoplastic localization signal (shpa1 (Xoo)) generated h pa1 (Xoo)- and sh pa1 (Xoo)-expressing transgenic A . t haliana (HETAt and SHETAt) plants, respectively. Hpa1(Xoo) was associated with the apoplast in SHETAt plants but localized inside the cell in HETAt plants. In addition, Hpa1(Xoo) localization accompanied H(2)O(2) accumulation in both the apoplast and cytoplasm of SHETAt plants but only in the cytoplasm of HETAt plants. Apoplastic H(2)O(2) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) located in the plasma membrane is a common feature of plant defenses. In SHETAt plants, H(2)O(2) was generated in apoplasts in a NOX-dependent manner but accumulated to a greater extent in the cytoplasm than in the apoplast. After being applied to the wild-type plant, Hpa1(Xoo) localized to apoplasts and stimulated H(2)O(2) production as in SHETAt plants. In both plants, inhibiting apoplastic H(2)O(2) generation abrogated both cytoplasmic H(2)O(2) accumulation and plant resistance to bacterial pathogens. These results suggest the possibility that the apoplastic H(2)O(2) is subject to a cytoplasmic translocation for participation in the pathogen defense.  相似文献   

14.
The study unveils that inoculation with arbuscular mycorrhizal fungus (Glomus intraradices Schenck and Smith) prevents salt-induced ultrastructural alterations in fenugreek (Trigonella foenum-graecum L.) plants. Mycorrhizal (M) and non-mycorrhizal (NM) fenugreek plants were subjected to four levels of NaCl (0, 50, 100, and 200 mM NaCl). Salt-induced ultrastructural changes were captured using a Transmission Electron Microscope. Effects of salt on the ultrastructure of cells include shrinkage of protoplasm, widening apoplastic space between cell wall and cell membrane, disorganization of grana in chloroplast—swelling and reduction in the number of thylakoids, disintegration of chloroplast membrane, accumulation of plastoglobules, dilation of cristae and denser matrix in mitochondria, and aggregation of chromatin in nucleus. However, the extent of salt-induced ultrastructural damage was less in M plants as compared to NM plants. Lower lipid peroxidation and electrolyte leakage in M plants also indicated less membrane damage. This reduction of ultrastructure damage is a demonstration of enhanced tolerance in M plants to salt stress. The AMF-mediated lesser damage may be due to higher osmolyte (glycinebetaine, sugars) and polyamines concentration, and more and bigger plastoglobules (higher α-tocopherol concentration) in M plants as compared to NM plants. While lower Na+ and Cl? ions assures less ionic toxicity, higher osmolytes and tocopherols ensure osmotic adjustment and better capacity to scavenge free radicals generated due to salt stress, respectively.  相似文献   

15.
Arabidopsis thaliana hit1-1 is a heat-intolerant mutant. The HIT1 gene encodes a protein that is homologous to yeast Vps53p, which is a subunit of the Golgi-associated retrograde protein (GARP) complex that is involved in retrograde membrane trafficking to the Golgi. To investigate the correlation between the cellular role of HIT1 and its protective function in heat tolerance in plants, it was verified that HIT1 was co-localized with AtVPS52 and AtVPS54, the other putative subunits of GARP, in the Golgi and post-Golgi compartments in Arabidopsis protoplasts. A bimolecular fluorescence complementation assay showed that HIT1 interacted with AtVPS52 and AtVPS54, which indicated their assembly into a protein complex in vivo. Under heat stress conditions, the plasma membrane of hit1-1 was less stable than that of the wild type, as determined by an electrolyte leakage assay, and enhanced leakage occurred before peroxidation injury to the membrane. In addition, the ability of hit1-1 to survive heat stress was not influenced by exposure to light, which suggested that the heat intolerance of hit-1 was a direct outcome of reduced membrane thermostability rather than heat-induced oxidative stress. Furthermore, hit1-1 was sensitive to the duration (sustained high temperature stress at 37?°C for 3?d) but not the intensity (heat shock at 44?°C for 30?min) of exposure to heat. Collectively, these results imply that HIT1 functions in the membrane trafficking that is involved in the thermal adaptation of the plasma membrane for tolerance to long-term heat stress in plants.  相似文献   

16.
Fan QJ  Liu JH 《Plant cell reports》2012,31(1):145-154
Nitric oxide (NO) is a component of the repertoire of signals implicated in plant responses to environmental stimuli. In the present study, we investigated the effects of exogenous application of NO-releasing donor sodium nitroprusside (SNP) and nitric oxide synthase inhibitor N G-nitro-l-arginine-methyl ester (l-NAME) on dehydration and drought tolerance of Poncirus trifoliata. The endogenous NO level was enhanced by SNP pretreatment, but decreased by l-NAME, in the hydroponic or potted plants with or without stresses. Under dehydration, leaves from the SNP-treated hydroponic seedlings displayed less water loss, lower electrolyte leakage and reactive oxygen species accumulation, higher antioxidant enzyme activities and smaller stomatal apertures as compared with the control (treated with water). In addition, pretreatment of the potted plants with SNP resulted in lower electrolyte leakage, higher chlorophyll content, smaller stomatal conductance and larger photosynthetic rate relative to the control. By contrast, the inhibitor treatment changed these physiological attributes or phenotypes in an opposite way. These results indicate that NO in the form of SNP enhanced dehydration and drought tolerance, whereas the inhibitor makes the leaves or plants more sensitive to the stresses. The stress tolerance by NO might be ascribed to a combinatory effect of modulation of stomatal response and activation of the antioxidant enzymes. Taken together, NO is involved in dehydration and drought tolerance of P. trifoliata, implying that manipulation of this signal molecule may provide a practical approach to combat the environmental stresses.  相似文献   

17.
The tonoplast and plasma membrane localized sodium (potassium)/proton antiporters have been shown to play an important role in plant resistance to salt stress. In this study, AtNHX1 and AtNHX3, two tonoplast Na+(K+)/H+ antiporter encoding genes from Arabidopsis thaliana, were expressed in poplar to investigate their biological functions in the resistance to abiotic stresses in woody plants. Transgenic poplar plants expressing either gene exhibited increased resistance to both salt and water-deficit stresses. Compared to the wild type (WT) plants, transgenic plants accumulated more sodium and potassium ions in the presence of 100 mM NaCl and showed reduced electrolyte leakage in the leaves under water stress. Furthermore, the proton-translocating and cation-dependent H+ (Na+/H+ or K+/H+) exchange activities in the tonoplast vesicles isolated from the leaves of transgenic plants were higher than in those isolated from WT plants. Therefore, constitutive expression of either AtNHX1 or AtNHX3 genetically modified the salt and water stress tolerance of transgenic poplar plants, providing a potential tool for engineering tree species with enhanced resistance to multiple abitotic stresses.  相似文献   

18.
The present work describes, for the first time, the changes that take place in the leaf apoplastic antioxidant defenses in response to NaCl stress in two pea (Pisum sativum) cultivars (cv Lincoln and cv Puget) showing different degrees of sensitivity to high NaCl concentrations. The results showed that only superoxide dismutase, and probably dehydroascorbate reductase (DHAR), were present in the leaf apoplastic space, whereas ascorbate (ASC) peroxidase, monodehydroascorbate reductase (MDHAR), and glutathione (GSH) reductase (GR) seemed to be absent. Both ASC and GSH were detected in the leaf apoplastic space and although their absolute levels did not change in response to salt stress, the ASC/dehydroascorbate and GSH to GSH oxidized form ratios decreased progressively with the severity of the stress. Apoplastic superoxide dismutase activity was induced in NaCl-treated pea cv Puget but decreased in NaCl-treated pea cv Lincoln. An increase in DHAR and GR and a decrease in ASC peroxidase, MDHAR, ASC, and GSH levels was observed in the symplast from NaCl-treated pea cv Lincoln, whereas in pea cv Puget an increase in DHAR, GR, and MDHAR occurred. The results suggest a strong interaction between both cell compartments in the control of the apoplastic ASC content in pea leaves. However, this anti-oxidative response does not seem to be sufficient to remove the harmful effects of high salinity. This finding is more evident in pea cv Lincoln, which is characterized by a greater inhibition of the growth response and by a higher rise in the apoplastic hydrogen peroxide content, O(2)(.-) production and thiobarbituric acid-reactive substances, and CO protein levels. This NaCl-induced oxidative stress in the apoplasts might be related to the appearance of highly localized O(2)(.-)/H(2)O(2)-induced necrotic lesions in the minor veins in NaCl-treated pea plants. It is possible that both the different anti-oxidative capacity and the NaCl-induced response in the apoplast and in the symplast from pea cv Puget in comparison with pea cv Lincoln contributes to a better protection of pea cv Puget against salt stress.  相似文献   

19.
20.
To investigate the role that drought tolerance plays in growth, abscisic acid (ABA) accumulation and electrolyte leakage during water stress were compared in fast- and slow-growing black spruce ( Picea mariana [Mill.] B. S. P.) progenies. Changes in the ABA content of the needles were quantified using an indirect enzyme-linked immuno-sorbent assay validated by gas chromatography electron capture detection. Needle electrolyte leakage was estimated using a conductivity bridge. Seedlings were stressed using (1) osmotic stress, induced by a stepwise increase in concentrations of polyethylene glycol 3 350 (PEG) for ABA study and (2) air drying for electrolyte leakage study. Progenies did not differ in ABA levels under unstressed conditions, but progeny differences were observed under osmotic stress. Needle ABA content increased up to 500% under osmotic stress. Slow-growing black spruce progenies (25 and 46) accumulated more ABA under moderate (18% PEG), but not severe (25% PEG), osmotic stress. The slow-growing progenies also leaked more electrolytes under moderate to severe water stress and lost 50% electrolytes at a higher xylem tension, suggesting they suffered more injury and were less dehydration tolerant. Our previously-published results showed that slow-growing progenies lost their photosynthesis and stomatal conductance more quickly during osmotic stress and recovered more slowly after rehydration. Therefore, tolerance of dehydration leading to a maintenance of physiological integrity during drought stress could explain the fast growth rates of more vigorous black spruce progenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号